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Abstract. An uncovered bargaining solution is a bargaining solution

for which there exists a complete and strict relation (tournament) such that,

for each feasible set, the bargaining solution set coincides with the uncovered

set of the tournament. We provide a characterization of a class of uncovered

bargaining solutions.
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1. Introduction

A bargaining solution expresses �reasonable�compromises on the division of a surplus

within a group. In this paper we ask the following question: given a bargaining

solution, does there exist a complete and strict relation T (a tournament) such that,

for each feasible set A, the bargaining solution set coincides with the uncovered set

of T restricted to A? If the answer is positive, we call the bargaining solution an

uncovered bargaining solution.

We o¤er two (related) motivations. First, a bargaining solution can be interpreted

as a fair arbitration scheme (as argued for instance in Mariotti [9]). In this sense, we

may think of a bargaining solution as being rati�ed (or rati�able) by a committee.

In this interpretation, the tournament expresses the majority preferences of the com-

mittee, and the uncovered set is the solution to the majority aggregation problem.

A bargaining solution that does not coincide with the solution of any tournament is

certainly not fair in the described sense: it could not be rati�ed by any committee.

A second interpretation follows the �group revealed preference�interpretation pi-

oneered by Peters and Wakker [11]. As they argue, �the agreements reached in bar-

gaining games may be thought to reveal the preferences of the bargainers as a group�

(p. 1787). A tournament is a non-standard type of preference (lacking transitivity),

which has recently been considered in individual choice theory (Ehlers and Sprumont

[4], Lombardi [7]). It seems even more appropriate to consider such non-standard

preference for a group than for an individual.

For single valued solutions the issue under study has essentially been solved, since

a single valued uncovered bargaining solution maximizes (if certain regularity condi-

tions are met)1 a binary relation (in other words, the solution point is a Condorcet

winner of the underlying tournament). For the domain of convex problems, Peters

and Wakker [11] have shown that this is the case if and only if the solution satis�es

Nash�s Independence of Irrelevant Alternatives2. Denicolò and Mariotti [3] show that

1See the end of the next section for a discussion of this point.
2Peters and Wakker work with a weak relation. However it is easy to show - by using elementary

duality properties in the maximization of binary relations - that a strict relation could be used

instead. See e.g. Kim and Richter [6] or Aleskerov and Monjardet [1] for discussions of this issue in
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the same holds for certain domains of non-convex problems, provided that Strong

Pareto Optimality is assumed. In this latter case the binary relation is transitive.

Therefore, the problem under study is new and interesting only for multivalued solu-

tions. It is thus natural to look at a domain of nonconvex problems, as many notable

solutions (such as the Nash Bargaining Solution) are single-valued on a domain of

convex problems.

We focus on solutions which satisfy a �resoluteness�condition: loosely speaking,

when only two feasible alternatives x and y are Pareto optimal (so the bargaining

problem is essentially binary), the solution picks either x or y. For this class of so-

lutions, we provide a complete characterization of uncovered bargaining solutions for

which the underlying tournament satis�es certain Paretian properties. The character-

ization uses four axioms: Strong Pareto Optimality; a standard Expansion property

(if an alternative is in the solution set of a collection of problems, it is in the solution

set of their union); a generalization of the �Condorcet�property (if an alternative is

chosen in �binary�comparisons over each alternative in a collection, then it is the

solution of the problem including all the alternatives in the collection); and a weak

contraction consistency property (implied by Arrow�s choice independence axiom).

2. Preliminaries

An n-person bargaining problem is a pair (A; d), with d 2 A and A � <n, where A
represents the set of feasible alternatives and d is the disagreement point.

The null-vector is denoted 0 2 <n. The vector inequalities in <n are: x > y

(resp.: x > y) if and only if xi > yi (resp.: xi > yi) for every i. We view, as usual,
x 2 <n as a utility or welfare vector for n agents.
A domain of bargaining problem B is said to be admissible if:

D1 For every pair (A; d) 2 B: A is compact, and there exists x 2 A such that x > d.

D2 For all x; y 2 <nd , where x 6= y and <nd = fx 2 <njx > dg, there exists a unique
(M (x; y) ; d) 2 B such that:

abstract choice theory.
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1) x; y 2 M (x; y) and for every z 2 M (x; y) such that z =2 fx; yg, x > z or

y > z;

2) for every (A; d) 2 B such that x; y 2 A: M (x; y) � A.

D3 For all (A; d) ; (B; d) 2 B: (A [B; d) 2 B.

Many bargaining domains considered in the literature are particular cases of ad-

missible domains3. For example the set of comprehensive problems (Zhou [12], Peters

and Vermeulen [10]), the set of �nite problems (Mariotti [8], Peters and Vermeulen

[10]), the set of all problems satisfying D1 (Kaneko [5]), the set of d-star shaped prob-

lems4. D2 guarantees the existence of a �minimal�problem containing any two given

alternatives x and y, and such that x and y are the only strongly Pareto optimal

feasible alternatives.

Unless speci�ed otherwise, B is from now on a class of n-person admissible bargain-
ing problems. A bargaining solution on B is a nonempty correspondence f : B � <n

such that f (A; d) � A for all (A; d) 2 B.
Given a bargaining solution f , we say that an alternative x 2 A is the f-Condorcet

winner in (A; d) 2 B, denoted by x = CW (A; d), if x = f (M (x; y) ; d) for all y 2 A,
with y 6= x. Moreover, x 2 A is said to be an f-Condorcet loser in (A; d), denoted by
x 2 CL (A; d), if y = f (M (x; y) ; d) for all y 2 A, with y 6= x.
Finally, the following abuses of notation will be repeated throughout this note:

f (A; d) = x instead of f (A; d) = fxg, A [ x instead of A [ fxg, Anx instead of
An fxg.
We consider only resolute solutions, that is those which satisfy the following prop-

erty. For all x; y 2 <n, with x 6= y, for all A � <n:
Resoluteness: jf (M (x; y)) j = 1.
Resoluteness is analogous to a property with the same name imposed by Ehlers

and Sprumont [4] and Lombardi [7] for individual choice functions over �nite choice

sets, given that (in the presence of Strong Pareto Optimality, de�ned below) the

3This class was essentially introduced in Denicolò and Mariotti [3].
4That is, those problems (A; d) for which the convex hull of fd; xg is in A for all x 2 A.
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minimal problemM (x; y) involves essentially a choice between only two alternatives.

For standard solutions that are obtained by maximizing a quasiconcave �social welfare

function�(e.g. the Nash Bargaining Solution or the Utilitarian solution) this involves

adding a tie-breaking criterion on minimal problems.

In addition the following properties will be used in the characterization result.

Axiom 1. (Strong Pareto Optimality) x > y and x 6= y 2 f (A; d)) x =2 A.

Axiom 2. A;B 2 B, x = CW (A; d) & y 2 CL (B [ x; d)) y =2 f (A [B; d)

Axiom 3. x; y; z 2 <n, with x 6= y 6= z, x = f (M (x; y) ; d) & y = f (M (y; z) ; d)

) x 2 f (M (x; y) [M (y; z) ; d)

Axiom 4. Given a class of problems fAk; dg, then \kf (Ak; d) � f ([kAk; d)

Strong Pareto Optimality is standard. Axioms 2 is a generalization of the natural

�Condorcet Winner Principle�

x = CW (A; d)) x = f (A; d)

which is implied by setting B = ; in axiom 2.

Axiom 3 is a weak independence property. It says that if an alternative x is

the unique solution point in a minimal problem where the only other Pareto op-

timal feasible alternative is y, and if y is the unique solution point in a minimal

problem where the only other Pareto optimal feasible alternative is z, then x is

a solution point of a minimal problem where the only other Pareto optimal feasi-

ble alternatives are y and z. Consider the following standard contraction consis-

tency axiom5: R � S & f(S; d) \ R 6= ? ) f(R; d) = f(S; d) \ R. Suppose

x =2 f (M (x; y) [M (y; z) ; d). If f is Pareto optimal then f (M (x; y) [M (y; z) ; d) �
fy; zg. Suppose y 2 f (M (x; y) [M (y; z) ; d). If contraction consistency holds,

then f (M (x; y) ; d) = y. If on the other hand y =2 f (M (x; y) [M (y; z) ; d), that

is z = f (M (x; y) [M (y; z) ; d), and if f satis�es contraction consistency, then

5This is also called Arrow�s choice independence axiom.
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z = f (M (y; z) ; d). In either case the premise of axiom 3 is violated. This shows

that, in the presence of Pareto optimality, axiom 3 is a very special implication of

contraction consistency.

Finally Axiom 4 is standard in choice theory: if an alternative is a solution point

for every element of a given collection of bargaining problems, then it is still a solution

point of their union.

We are, as usual, only interested in solutions that satisfy translation invariance.

Then, we can set d � 0. A bargaining problem simply becomes a subset of <n

containing the null-vector and the notation is simpli�ed accordingly.

A binary relation T � <n�<n is a tournament if it is asymmetric (i.e., for every
x; y 2 <n, x 6= y, (x; y) 2 T ) (y; x) =2 T ) and weakly connected (i.e., for every
x; y 2 <n with x 6= y, f(x; y) ; (y; x)g \ T 6= ;). We denote by T the set of all

tournaments on <n. A restriction of T to A � <n, denoted by T jA, is a tournament.
For x 2 <n, let T�1(x) and T (x) denote the lower and upper sections of T at x,

respectively, that is:

T�1 (x) = fy 2 <nj (x; y) 2 Tg , and

T (x) = fy 2 <nj (y; x) 2 Tg .

For any tournament T 2 T and A � <n, de�ne its covering relation CjA on A by:

(x; y) 2 CjA i¤ (x; y) 2 T jA and T�1 (y) \ A � T�1 (x) \ A

The uncovered set of T jA, denoted UC (T jA), consists of the CjA�maximal elements
of A, that is:

UC(T jA)= fx 2 Aj (y; x) =2 CjA for all y 2 Ag .

The Strong Pareto relation P on <n is de�ned by

for x; y 2 <n, x 6= y: (x; y) 2 P , xi � yi for all i, and xj > yj for some j.

We say that a tournament T 2 T is Pareto consistent if for x; y; z 2 <n, with
x 6= y 6= z:

(x; y) 2 P ) (x; y) 2 T ,



Uncovered Bargaining Solutions 7

(x; y) 2 P & (y; z) 2 T ) (x; z) 2 T .

So, a Pareto consistent tournament includes the Strong Pareto relation and sat-

is�es a form of �Pareto transitivity�: any x which Pareto dominates y will beat any

alternative z which is beaten by y.

De�nition 5. A bargaining solution f is an uncovered set bargaining solution (UCBS)

if there exists T 2 T such that, for every A 2 B, f (A) = UC (T jA). In this case we
say that T rationalizes f .

As an example of an UCBS which does not coincide with a standard solution,

consider the following class. Let F be a asymmetric transitive and weakly connected

relation, which here we interpret as �fairness�6. Recall that P is the Strong Pareto rela-

tion. Then de�ne the solution f by: x 2 f (A) i¤ for all y 2 Anx: either (x; y) 2 P ; or
[(y; x) =2 P & (x; y) 2 F ]; or [(x; z) 2 P & (z; y) 2 F & (y; z) =2 P for some z 2 A];
or [(x; z) 2 F & (z; x) =2 P & (z; y) 2 P for some z 2 A]. In words, fairness is ig-

nored if and only if a Pareto ranking is possible, and given this constraint, for any

other alternative y, the chosen alternative x must either dominate y directly in terms

of Pareto or fairness, or indirectly via an intermediate alternative z, applying the

Pareto and fairness (or vice versa) criteria in succession. The solution f is, in each

problem, the uncovered set of the tournament T de�ned by: (x; y) 2 T i¤ either

(x; y) 2 P ; or [(y; x) =2 P and (x; y) 2 F ] (note that T is weakly connected and asym-
metric); or both.

Finally, we come back brie�y to the issue of single-valued solutions alluded to

in the introduction. Let T be a tournament on A, and suppose UC (T jA)) =
fxg for some x 2 A. If x is not a Condorcet winner, T (x) is nonempty. Let

y 2 UC (T jT (x) [ x). Then y 2 UC (T jA), since for any z 2 T�1 (x) we have

(y; x) ; (x; z) 2 T . But this contradicts the assumption that UC (T jA) = fxg. So
x must be a Condorcet winner of A if it is the unique uncovered element of A. In

this reasoning, however, it assumed that the uncovered set of T (x) [ x is nonempty,
6F could be constructed for example on the basis of the Euclidean distance to the 450 line, with

the addition of a tie-breaking criterion.
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which is not necessarily true if T (x) is not �nite. For conditions guaranteeing the

nonemptiness of the uncovered set on general topological spaces see Banks, Duggan

and Le Breton [2].

3. Characterization

We show below that in the presence of Resoluteness, axioms 1-4 characterize uncov-

ered bargaining solutions for which the rationalizing tournament is Pareto consistent.

Theorem 6. Let f be a resolute bargaining solution. Then f is an UCBS, rational-

ized by a Pareto consistent tournament, if, and only if, it satis�es axioms 1-4.

Proof. (Only if ). Let f be a resolute UCBS. Obviously f satis�es Strong Pareto

Optimality and Weak Expansion. Next, we check axioms 2-3.

To verify axiom 2, let x = CW (A), and y 2 CL (B [ x), with x 6= y. The

existence of a Pareto consistent T implies that (x; z) 2 T for all z 2 Anx [ y.
Moreover, as y =2 f (M (y; w)) for all w 2 Bny, there exists w0 2 M (w; y) ny which
covers y. If w0 = w, then (w; y) 2 T . Otherwise, consider w0 6= w. Since w0 is

not strongly Pareto dominated by y, it must be the case that (w;w0) 2 P , by D2.
It follows from Pareto consistency of T that (w; y) 2 T . Therefore, whether or not
w = w0 we have that (w; y) 2 T . Since (x; z) 2 T for all z 2 Anx [ y and (w; y) 2 T
for all w 2 Bny, it follows that x covers y, and so y =2 UC (T jA [B) as desired.
For axiom 3, let x; y; z 2 <n, with x 6= y 6= z, and let x = f (M (x; y)) and

y = f (M (y; z)). We show that x 2 f (M (x; y) [M (y; z)). Since x = f (M (x; y))

and y = f (M (y; z)), there exists a Pareto consistent T such that (x; x0) 2 T for

all x0 2 M (x; y) nx and (y; y0) 2 T for all y0 2 M (y; z) ny. Observe M (x; y) [
M (y; z) 2 B, by D3. Since no point in M (x; y)[M (y; z) nx covers x, it follows that
x 2 f (M (x; y) [M (y; z)).

(If). Let f be a resolute bargaining solution satisfying the axioms. De�ne the

relation T on <n as follows:

for all x; y 2 <n, with x 6= y, (x; z) 2 T i¤ x = f (M (x; y)) .

For all x; y 2 <n, with x 6= y, there exists a minimal problem M (x; y), by D2. It

follows from Strong Pareto Optimality and Resoluteness that either x = f (M (x; y))
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or y = f (M (x; y)). Then, T is weakly connected and asymmetric, and so T 2 T
. To see that T is Pareto consistent as well, let x; y; z 2 <n, with x 6= y 6= z. We

show that i) xPy ) xTy, and ii) (x; y) 2 P & (y; z) 2 T ) (x; z) 2 T . Case

i) directly follows from Strong Pareto Optimality. Next, we show case ii). Since

x = f (M (x; y)) and y = f (M (y; z)), it follows from axiom 3 combined with D3

that x 2 f (M (x; y) [M (y; z)). Since M (x; y) [M (y; z) = M (x; z), Resoluteness

implies that x = f (M (x; z)), and we are done.

We claim that

f (A) = UC (T jA) for all A 2 B:

Fix A 2 B. For any x 2 A partition A in T (x), T�1 (x) and fxg.
Let x 2 f (A) and assume, to the contrary, that x is a covered point. Then for

some y 2 Anx it must be the case that (y; x) 2 T and T�1 (x) � T�1 (y). Therefore
y = CW (T�1 (x) [ fx; yg). Let z 2 T (x), and consider the minimal bargaining

problem M (x; z). By de�nition of T , we have that z = f (M (x; z)) for all z 2 T (x),
and so x 2 CL (T (x) [ x). It follows from axiom 2 that x =2 f (A), a contradiction.
Conversely, let x 2 UC (T jA). Take any y 2 T�1 (x), and consider the minimal

bargaining problem M (x; y). By de�nition of T it follows that x = f (M (x; y)).

Because it is true for any y 2 T�1 (x), we have that x = CW (T�1 (x) [ x). If

T (x) = ?, it follows from the Condorcet Winner Principle implied by axiom 2

that x 2 f (A). Otherwise, take any z 2 T (x). Since T is Pareto consistent and
z 2 T (x), there exists y 2 T�1 (x) which is not strongly Pareto dominated either
by x nor by z such that (y; z) 2 T . Axiom 3, combined with D3, implies that

x 2 f (M (x; y) [M (y; z)). Because this holds for any z 2 T (x), axiom 4 implies

that x 2 f (A).

4. Independence of the axioms

The axioms used in theorem 6 are tight, as argued next.

For an example violating only Strong Pareto Optimality, consider the disagree-

ment point d as the solution of any admissible bargaining problem, that is, f (A; d) =

d for every (A; d) 2 B. Clearly, f is resolute and satis�es axioms 2-4, but not Strong
Pareto Optimality.
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Next, let us consider for simplicity only 2-person bargaining problems.

For an example violating only axiom 2, de�ne, for every x; y 2 <2+, with x 6= y:

f (M (x; y)) = x if x1 + x2 > y1 + y2 or x1 + x2 = y1 + y2 & x1 > y1,

whilst, for any non-minimal problem A 2 B, de�ne the bargaining solution f as:

f (A) = argmax
s2A

(s1 + s2).

To see that axiom 2 is contradicted, consider the domain of �nite problems, and

let x; y; z 2 A, where x = (2; 1), y = (1; 2), and z = (1; 0). By de�nition, f (xy) =
f (xz) = x, and f (yz) = y, but f (xyz) = xy, which violates axiom 2. Obviously, the

bargaining solution is resolute, and it satis�es axioms 1 and 3-4.

For an example violating only axiom 3, �x y; z 2 <2++, with y 6= z, such that

y1 + y2 = z1 + z2. De�ne

f (M (z; y)) = z if a = z & b = y.

Given any other bargaining problem A 2 B, de�ne the bargaining solution f as the
following:

f (A) =

(
argmaxs1 fargmaxs2A (s1 + s2)g if y =2 A or z =2 A

argmaxs1 fargmaxs2A (s1 + s2)� fygg otherwise
.

To see that axiom 3 is contradicted, consider the domain of �nite problems, and

let x; y; z 2 A, where x = (2; 2), y = (3; 1), and z = (1; 3). We have that f (xy) = y,
f (xz) = x, and f (yz) = z. Consider the bargaining problem A0 = fx; y; zg. Given
that y; z 2 A0, it follows from de�nition of f that x = f (A0), which violates axiom

3. Clearly, the bargaining solution is resolute and satis�es axiom 1. It is easy but

tedious to check that it satis�es axioms 2 and 4 as well (details available from the

authors).

Finally, for an example violating only axiom 4, �x x; y; z 2 <2++, with x 6= y 6= z
and x1+x2 = y1+y2 = z1+z2, and letM (x; y)[M (y; z) = C 2 B with f (M (x; y)) =

x, f (M (y; z)) = y, and f (M (x; z)) = z. De�ne for any a; b 2 <2+nfx; y; zg, with
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a 6= b: f (M (a; b)) = a if a1 + a2 > b1 + b2 or a1 + a2 = b1 + b2 & a1 > b1, whilst let

for any a 2 <2+nfx; y; zg and b 2 fx; y; zg:

f (M (a; b)) = a if a1 + a2 > b1 + b2

f (M (a; b)) = b if a1 + a2 � b1 + b2
.

De�ne the following set of alternatives Sa:

Sa = fb 2 <2+najf (M (a; b)) = ag

and for any bargaining problem A 2 B not yet considered de�ne the bargaining

solution f as:

f (A) =

8>>>>>>><>>>>>>>:

argmaxs1 (argmaxs2A (s1 + s2)) if A \ fx; y; zg = ;
argmaxs1 (argmaxs2A (s1 + s2)� Sa) if A \ fx; y; zg = fag
argmaxs1 (argmaxs2A (s1 + s2)� Sa) if A \ fx; y; zg = fa; bg & f (M (a; b)) = a

x; y; z if A = C

argmaxs1 (argmaxs2A (s1 + s2)� Sy) otherwise

.

To see that axiom 4 is contradicted, consider the domain of �nite problems, and

let A = fx; y; z; wg, where x = (2; 2), y = (3; 1), z = (1; 3), and w = (1; 1). By

construction f (xy) = x, f (yz) = y, f (xz) = z, and f (xyz) = xyz; furthermore, we

have that f (xw) = x, f (yw) = y, and f (zw) = z. Let us consider the bargaining

problem fx; z; wg = B. Since x; z 2 B and f (xz) = z, it follows from the de�nition

of f that z = f (B). However, we have that z =2 f (A), by de�nition of f , which
violates axiom 4. The bargaining solution as de�ned above is obviously resolute and

it satis�es 1. Moroeover, it can be checked that it satis�es axioms 2-3 (the tedious

analysis is available from the authors).

5. Concluding remarks

Lombardi [7] studies choice correspondences on the domain of all subsets of an ab-

stract �nite set, and poses the same question as this paper. At the technical level,

the main di¢ culty here is that bargaining sets are not always �nite. This necessi-

tates the di¤erent axioms and argument of proof presented in this paper, as well as
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the restriction to Pareto consistent tournaments. These arguments exploit heavily

the ordering structure of <n and the natural Strong Pareto Optimality assumption,
which is instead meaningless on the domain considered by Lombardi.

Ehlers and Sprumont [4], on the same domain as Lombardi, characterize choice

correspondences for which there exists a tournament such that, for each choice set,

the choice is the top cycle of the tournament. It is natural to seek a similar charac-

terization in the context of bargaining solutions, as we have done for the uncovered

set. This remains an open question for future research.
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