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Abstract. In this paper we investigate the economic rationality of the bed downsizing process 

characterising the hospital industry worldwide in the last decades, providing new evidence on the 

factor substitutability in the production of hospital services. We consider a sample of Italian 

regional producers and – differently from other studies – estimate a general cost function model, 

namely the Generalised Composite, firstly introduced by Pulley & Braunstein (1992). 

Alternative cost function specifications (included Translog) are estimated jointly with their 

associated input cost-share equations. For all models we derive Allen, Morishima and Shadow 

elasticities of substitution between input pairs, obtaining a fairly consistent picture across all 

specifications and elasticity concepts. More precisely, our results suggest a very limited degree 

of substitutability between factors in the production of hospital services (in particular, between 

beds and medical staff). These findings, consistent with previous evidence in the literature, 

suggest that a restructuring policy of the hospital industry which is confined to limiting the 

number of beds could not be a viable strategy for controlling the increase in public health care 

expenditure. 
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1. Introduction 

A huge process of reorganisation invested hospital industries worldwide in the last 

decades. At a macro level, in order to curb the presence of excess capacity, public 

producers’ number of beds has been reduced by Central or Regional governments 

almost anywhere (e.g. Kroneman and Siegers, 2004; Hensher et al., 1999). At a micro 

level, a number of M&As - interesting both private and public hospitals - has been 

observed in several countries, not only as a response to bed reduction, but also to exploit 

scale and scope economies, and improve effectiveness and quality of care. The process 

has been originated on two basic premises: on the one hand, the need to contain public 

health care expenditure imposed governments to find new ways on how to improve the 

efficiency (and the effectiveness) in the provision of health services. As expenditure for 

hospital services represented (and still represent) a significant share of total health 

expenditure, it is not surprising that hospitals were clearly at the core of policies aimed 

at controlling expenditure growth. On the other hand, the perception that an ageing 

population would have different needs (especially chronic illnesses) with respect to past 

years caused traditional hospitals – which focus typically on acute care – not to be 

tailored to answer these structural changes in the epidemiological context. 

This massive ongoing reshaping of the hospital industry raises of course a number of 

questions, that only in recent years the academic literature has started to ask. A first 

problem to address is to understand whether M&As are justified both from an efficiency 

and an effectiveness point of view. In this perspective, as discussed in Posnett (1999), 

results are somewhat mixed. As for efficiency, for instance, studying the Canadian 

Province of Ontario, Preyra and Pink (2006) find large scale unexploited gains from 

consolidation in the hospital sector, while Bilodeau et al. (2002), concentrating on 

Québec, show the presence of both economies and diseconomies of scale, with some 

establishments operating at constant returns to scale. As for effectiveness, for example, 

focusing on U.S. surgical procedures, Birkmeyer et al. (2002) find that mortality rates 

are lower the higher the volume of patients treated, whereas Grilli et al. (1998) 

challenge this view, by surveying literature on cancer patients. A second question to 

focus on is the strategic reply of hospitals to bed reductions implemented by Central and 

Regional governments. For instance, Kroneman and Siegers (2004) find that 

behavioural responses are related to the hospital financing system: in particular, in 

global budget systems, occupancy rates appear to decline after a reduction in hospital 
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bed supply, while in per diem financing systems, admission rates did not drop following 

bed downsizing. In both systems, no effects are detected on average length of stay. 

In this framework, in order to understand the potential role of industry restructuring on 

health expenditure growth, an important issue to be discussed concerns workforce 

management after bed reductions. In the U.S., where the share of private producers is 

higher than elsewhere, bed downsizing has been sometimes accompanied also with staff 

reductions, with no clear effects on hospital performance. Chadwick et al. (2004) find 

for example that Human Resource Management practices are important determinants of 

successful downsizing, of both beds and the workforce. In particular, looking at 

financial performance of hospitals, they find a positive impact of consideration for 

employees’ morale and welfare during downsizing (like more extensive communication 

and advance notice, respectful treatment of laid off employees, attention to survivors’ 

concerns on job security). Somewhat contrary to this view, Aiken et al. (2002a, 2002b) 

find that better staffing is positively associated with higher nurse-assessed quality of 

care, lower risk-adjusted and failure-to-rescue rates, lower level of dissatisfaction and 

burnout, hence suggesting a deterioration of performance following downsizing. 

However, in other countries, especially in Europe, where the share of public producers 

is higher, the restructuring of the industry has been limited in most cases to bed 

downsizing, while workforce management and planning has been conducted using fixed 

ratio relationships (e.g. physicians to patients) that have no empirical validity (e.g. 

Bloor and Maynard, 2003). Of course, this one-factor restructuring process has caused a 

consistent change in the input-mix, in particular an increase in medical staff per bed. 

Several factors can help explain observed variations in input-mix. For instance, a higher 

need of labour can be related to a higher severity of illness in acute care patients. This 

might be linked to the increase in patients turnover and the reduction in average length 

of stay (endogenously determined by clinicians), which characterised hospital industries 

in countries that adopted a Prospective Payment System. Or it might be a signal of the 

increase in the quality of services, both perceived by nurses or measured in terms of 

mortality rates (e.g. Aiken et al., 2002a, 2002b). 

In this paper, we aim at understanding whether this change in input-mix is economically 

rational, by focusing on the production technology of hospital services. We estimate 

different cost function models and derive factors elasticity of substitution, considering a 

sample of regional Italian hospitals. Like other countries, Italian hospital industry 
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experienced a wide restructuring process. However, downsizing has been limited mostly 

to bed, while workforce reduction has been tackled only blocking turnover, causing a 

large increase in medical staff per bed. Besides uncovering potential inefficiencies 

which can limit the impact of hospital restructuring on health expenditure, the 

estimation of input elasticities of substitution is important per se, since very few studies 

have addressed this issue in the economic literature, and none of these has tested 

different functional forms for the hospital cost function. 

The remainder of the paper is structured as follows: Section 2 surveys economic 

literature on input substitutability in the production of hospital services. Our empirical 

exercise is in Section 3, where we describe our sample, the functional forms and the 

estimation procedures, and the results. Section 4 concludes. 

2. Input substitutability in the production of hospital services 

While estimation of production and cost functions and efficiency analysis have received 

considerable attention in the literature on the hospital industry, economic studies 

working out also input substitutability in the production of hospital services are quite 

rare. A pioneering study is that by Bothwell and Cooley (1982), focusing on Health 

Maintenance Organizations in the U.S.. They distinguish four inputs (administrative 

services, hospital services, medical professional staff services, and capital expenses for 

maintaining a health centre), and find that administrative services are complements to 

all the other inputs, but that there is substitution between all other input pairs. In 

particular, Allen elasticity of substitution between medical staff and capital expenses 

(the input pair we are most interested in, to understand the observed change in input-

mix), is estimated to be 0.638, which suggest small substitution possibilities. Jensen and 

Morrisey (1986), studying the U.S. short-term general acute care hospitals, confirm this 

result, estimating that elasticity of substitution of medical staff with beds ranges 

between 0.247 (for non-teaching hospitals) to 0.303 (for teaching ones), and elasticity of 

substitution between nurses and beds ranges between 0.189 and 0.305 (respectively, for 

the same type of hospitals). These estimates are even lower adjusting output for case-

mix. The same difficulties in substituting between inputs is found also for medical staff 

and nurses, with estimated elasticities close to 0.35 for both types of hospitals. This last 

result is in contrast with Cowing and Holtmann (1983). Considering New York State 

hospitals and computing Allen elasticities, they find substantial substitutability between 
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nurses and other types of workers in the short-run, but no estimates are provided for 

substitution between labour and capital. 

More recent studies include e.g. Bilodeau et al. (2002) and Okunade (2003). 

Considering hospitals in Québec, the former study estimates an hospital cost function 

with five inputs (labour, drugs, food, supplies, and energy). While not reporting 

punctual estimates of Allen elasticities, the authors interpret substitutability of supplies 

and energy with labour as the hospitals’ general ability to substitute capital for labour. A 

more complete analysis of input substitutability – considering Allen, Morishima, and 

shadow measures of elasticities - is provided by Okunade (2003) for Health 

Maintenance Organizations in the U.S.. The general conclusion – based on the preferred 

Morishima conceptual measure – is that HMOs production technology is characterised 

by significant but limited factor substitutions. More specifically, estimated Morishima 

elasticity of substitution between capital and medical staff given a change in the price of 

capital is 0.5124, while given a change in the wages of professional inputs is 0.667. 

These estimates imply that: a 10% increase in the price of capital, will cause the ratio of 

medical staff to capital to raise to about 5.12%; a 10% increase in the wages of medical 

staff, will lift the capital/professional inputs by about 6.7%. 

Taken together, available evidence on factor substitutability in the production of 

hospital services seem to suggest that substitution is possible between capital and 

medical staff (both physicians and nurses), but is rather limited. In the next sections, we 

provide additional evidence on this point, by considering different functional forms and 

different concepts of elasticity of substitution. 

3. Empirical analysis 

3.1. The sample 

As discussed in the previous sections, the aim of the paper is the study of the 

technological characteristics of hospital services supply, and the exploration of 

substitution possibilities among the different inputs involved in the productive process, 

especially between the number of beds and medical staff (both physicians and nurses). 

The data used in the econometric analysis have been obtained by the Piedmont Region 

(a highly industrialised area in the North-Western part of Italy), and are relative to the 

productive activity and the cost structure of all the hospitals operating in one of the 27 

Local Health Units (LHU) active during the period 2000-2004. LHU are vertically 
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integrated organisations funded by the Region, and responsible of a whole array of 

hospital and community services (e.g. France et al., 2005). The sample includes two 

types of hospitals: those directly managed by the LHU (ASL from now on), and other 

major hospitals that have been hived off from the LHU and transformed into 

independent enterprises called Aziende Ospedaliere (AO from now on). 

This unique dataset includes all the publicly owned firms involved in the provision of 

hospital services in the Piedmont Region. The time span covered by the data follows the 

(still unfinished) reform process of the National Health Service (NHS), so that our units 

are affected by the downsizing policy of the industry, which has been pursued during 

the 90s, and which is still regarded as one of the primary areas of intervention to control 

health expenditure. Planning at the regional level of health care provisions (as envisaged 

in the recent Piedmont Socio-Health Plan for the years 2006-2010) foresees a 

reorganisation of the regional hospital network, with the aim of increasing the quality 

and the effectiveness of services. This would imply a reduction of the required number 

of beds, due to the planned reduction of average length of stay, and a parallel increase in 

outpatient treatments, home care services, consultancy and day hospital treatments. 

Information on the number of beds and on the quantity and complexity of the services 

provided (number of patients, average DRG weight, number of inpatient days) have 

been collected for each single hospital within a LHU and for each AO. The total number 

of beds, both ordinary and for day-hospital, are then computed for each ASL by 

aggregating the values of the different hospitals which belong to the same LHU. 

Unfortunately, disaggregated information on the costs and on the labour force are 

available only for AO, but are not available for each hospital within each LHU. This 

limitation can represent a problem for ASL units, since staff costs can be related also to 

community services, rather than hospital services. For such units, considering all costs 

as relative to the core hospital activity would be inappropriate, so that caution must be 

put in choosing which type of costs can be included in the study. To that purpose, the 

different types of costs have been selected and reorganised so as to obtain a measure of 

operating cost with a composition that can be comparable for ASL and AO structures. 

First, financial costs, extraordinary and atypical costs have been subtracted. The 

breakdown of the remaining costs is shown in table 1. As can be easily seen, the cost 

structure is rather different between ASLs and AOs. If labour costs (in particular 

medical staff) represent 50% of total operating costs for AO, in the case of ASL their 
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share is only 35% in 2000-2002 and 25% in the last two years of observation. On the 

other hand, a large portion of costs of ASL structures is relative to outsourced services 

(more than 60% in 2004), a category that is not so important (less than 10% of costs) for 

AOs. The share of the costs of drugs is about 3% for ASLs and 6.5% (increasing up to 

8.3% in 2004) for AOs. The relative importance of operating services given out by 

contract (such as food services, cleaning and laundry) is different among the two types 

of hospitals too: it is about 2% for ASLs, and 4-5% for AOs. Finally, depreciation and 

administrative expenditures weight less for the former than for the latter. 

 

[TABLE 1 HERE] 

 

The figures in table 1 clearly confirm that the two types of hospitals are not performing 

identical tasks. Since our aim is to identify an operating cost structure which is as much 

homogeneous as possible, we selected the costs items that are more closely related to 

the core activity of hospitals, that is the provision of health care services. We come out 

with a final aggregation named operating hospital costs (OHC, the dependent variable in 

our econometric model) which is the sum of the costs of the following inputs: labour, 

drugs, capital (the measure of which is proxied by the total number of beds)1. As shown 

in table 2, for what concerns the relative weight of the different cost categories, the two 

types of hospitals are now much more similar. Labour costs are about 86% of operating 

hospital costs, while the weights of drugs and depreciation are respectively 9.6% and 

4.4%. OHC has an average value of 79 million euro for ASLs (average yearly growth 

rate of 3.6%) and 122 million euro for AOs (average yearly grow rate of 4.8%).  

 

[TABLE 2 HERE] 

 

3.2. Explanatory variables of the cost model 

Exploiting the informative content of the database, we have obtained the following 

explanatory variables to be included in the estimation of the cost function: output, 

complexity of provided services (case-mix), input prices. The full sample is a panel of 

29 productive units which are observed over a period of 5 years, for a total of 145 

                                                 
1 Such a restricted cost aggregate corresponds on average to 32% of total operating costs for ASL (65% 
for AOs). 
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observations. As an index of production volume (Y) we opted for the total number of 

patients per year (ordinary and in day-hospital). In addition, in order to keep into 

account the severity of illnesses, a control variable of the average DRG weight (DRGW) 

has been added. Such a variable should reflect the differences in the production mix, i.e. 

the average degree of complexity of the services provided by the hospital structures2. 

As the labour input is concerned, a distinction has been made between medical staff 

(MS, including physicians and nurses) and administrative staff (AS); the average price 

for the two categories (PMS and PAS, respectively) has been obtained by dividing costs 

by the effective number of employees. As a proxy for the price of drugs (PD) we used 

the ratio between the corresponding cost and the total number of in-patients days per 

year. Finally, the average price of the capital input (PK) has been computed by dividing 

depreciation costs by the total number of beds. A time trend that should reflect the effect 

of technical progress has been added to the model (TREND). Its coefficient can be 

interpreted as a growth (or reduction) rate of costs due to an Hicks-neutral technological 

change.  

[TABLE 3 HERE] 

 

Table 3 reports the descriptive statistics of the variables used in the estimation. There is 

a high variability in the level of operating costs and in the output levels, which is 

partially due to the fact that our sample of hospitals is very heterogeneous in size, but 

can be also explained by the above mentioned differences among ASL and AO units3.  

3.3. Functional form and estimation procedure 

The bulk of empirical works on hospital costs adopted the well-known Translog 

specification. Given the complexity of hospital services production process, we do not 

impose a priori restrictions on the functional form and estimate a more general model, 

namely the Generalised Composite cost function, which has been first introduced by 

Pulley and Braunstein (1992, PBG). The PBG model reads as follows: 

                                                 
2 For example, a tonsillectomy is a typical operation with a low degree of complexity (DRG weight 0.27), 
while thyroid and cardiovascular operations have an average (DRG weight 1.04) and a high degree (DRG 
weight 2.40) of complexity, respectively. 
3 The sample consists of 7 small units (average number of beds ≤ 368), 15 units of an average size 
(368<average number of beds ≤ 621) and 7 big units (average number of beds > 621). 
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where the superscripts in parentheses π, φ and τ represent Box-Cox transformations (for 
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(2) 

The Composite specification (PBC) is obtained by setting π = 1 and τ = 0. In a similar 

vein, the well-known Generalised Translog (GT) and Standard Translog (ST) models, 

as well as the Separable Quadratic (SQ) functional form, can be estimated by imposing 

simple restrictions on the system (1)-(2)4. 

The PB cost functions originate from the combination of the log-quadratic input price 

structure of the ST and GT specifications with a quadratic structure for outputs.5 The 

relatively few studies which employed the PB specifications referred to the banking, 

telecommunications, multi-utilities and electricity sectors. Overall, the composite model 

has consistently proved to be successful in obtaining more stable and reliable estimates 

than the alternative functional forms (see Fraquelli et al., 2005, for more details). The 

PBG model proposes to transform both sides of the cost function – from OHC = C(Y, P) 

to OHC(φ) = [C(Y, P)](φ) – in order to enlarge the set of plausible empirical 
                                                 
4 More precisely, the GT model is obtained  by setting  φ = 0 and τ =1, while the ST model requires the 
further restriction π = 0. The SQ model is obtained from the PBC specification by adding the restrictions 
δYr = 0 and δDRGWr = 0 for all r. 
5 The log-quadratic input price structure can be easily constrained to be linearly homogeneous. To be 
consistent with cost minimization, (1) must satisfy symmetry (βrl = βlr for all couples r, l ) as well as the 
following properties: a) non-negative fitted costs; b) non-negative fitted marginal costs with respect to 
outputs; c) homogeneity of degree one of the cost function in input prices (Σrβr = 1 and Σlβrl = 0 for all r, 
as well as ΣrδYr = 0 and ΣrδDRGWr = 0); d) non-decreasing fitted costs in input prices; e) concavity of the 
cost function in input prices.  
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specifications. The optimal value of φ can be estimated resorting to standard non-linear 

least squares routines. The comparison between the general PBG specification and the 

nested models (i.e. PBC, SQ, GT, and ST) can be made by LR tests using the estimated 

log-likelihood values for the system (1)-(2). 

All the specifications of the multi-product cost function are estimated jointly with their 

associated input cost-share equations. In our four-inputs case, to avoid the singularity of 

the covariance matrix of residuals, the equation for administrative staff (SAS) was not 

included in each of the estimated systems. Prior to estimation, all variables were 

standardized on their respective sample means. Parameter estimates were obtained via a 

non-linear GLS estimation (NLSUR), which ensures estimated coefficients to be 

invariant with respect to the omitted share equation. 

3.4. Results: the cost function 

The results of the NLSUR estimations for the ST, GT, SQ, and PB models are presented 

in table 4. By looking at the summary statistics (last five rows), one can observe that 

computed R2 for the cost function is rather high and identical across specifications, 

while R2 associated to the factor-share equations are not dissimilar except from the SQ 

model, for which are much lower (in particular for capital input). The poor ability of the 

SQ specification to fit the observed factor-shares is not surprising, given that it assumes 

a strong separability between inputs and outputs. McElroy’s (1977) R 
2 can be used as a 

measure of the general goodness of fit for the NLSUR system. The results suggest that 

the fit is almost identical for the different functional forms, and between 83% and 86%. 

However, LR tests comparing PBG and the restricted specifications (see table 5) always 

lead to favour the Generalised Composite model (at the 5% significance level) with 

respect to PBC, SQ, GT, and ST alternative functional forms.  

 

[TABLE 4 AND 5 HERE] 

 

The first six rows of table 4 present the estimates of first-order coefficients for output, 

average DRG weight and factor prices, which are all highly significant and show the 

expected sign. Since the results are similar across specifications, we comment only on 

the estimated parameters for the PBG model, which is to be preferred over the 
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alternatives according to LR tests. In particular, we briefly discuss cost elasticities with 

respect to Y, DRGW, PMS, PD and PK for the average hospital within the industry6. 

As for the output elasticity, the estimate is significantly lower than 1 (around 0.71, 

Standard Error 0.05), revealing the presence of remarkable scale economies (index of 

returns to scale about 1.41, SE 0.11) that could be better exploited, for instance, by 

enlarging the average size of hospitals managed by LHUs. On the DRGW side, it 

emerges a strong impact of the severity of illnesses on OHC (about 0.39, SE 0.13), 

which is consistent with previous empirical literature on the cost structure of hospital 

services. Finally, as for the estimates of input cost-shares for the average hospital - 

corresponding to cost elasticities with respect to the price of medical staff (0.66), drugs 

(0.10), and capital, proxied by beds (0.05) - they are very similar to their respective 

sample mean values (see SMS, SD and SK in table 3), thus confirming the general 

goodness of fit of the PBG cost function model. 

3.5. Results: the elasticities of substitution 

Given the main aim of this study, we computed Allen, Morishima, and Shadow 

elasticities of substitution for all the estimated models (Chambers, 1988). Ideally, one 

wants to measure for each couple of inputs the percentage change in the input ratio xr/xl 

due to a percentage change in the input price ratio Pl/Pr. Allen elasticities can be 

considered as one price-one factor elasticities, since they measure how the use of an 

input varies due to changes in the price of another input. They can be computed as σA
rl = 

εrl/Sl, where Sl is the lth cost share and εrl is the derived input-demand elasticity of input xr 

with respect to price Pl (dlnxr/dlnPl). While they have been criticized to a great extent in 

that they clearly are inappropriate measures of elasticities of substitution, Allen 

elasticities are still widely used in applied analysis. Morishima elasticities represent two 

factor-one price elasticities and are closer proxies to the desirable measure. They are 

computed as σM
rl = εrl – εll and measure how the r,l input ratio responds to a change in Pl. 

There is a useful link between Morishima and Allen elasticities: 

σM
rl = (σA

rl – σA
ll)Sl (3) 

It is straightforward to notice than when inputs are Allen substitutes, they must be also 

Morishima substitutes (since σA
ll is always negative) but the converse does not hold, so 

                                                 
6 The average LHU (the point of normalization) corresponds to a hypothetical LHU operating at an 
average level of production and degree of complexity, and facing average input prices.  
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that inputs can well be Allen complements and Morishima substitutes. Finally, Shadow 

elastiticities of substitution are a weighted average of Morishima elasticities and, as 

such, they are two factor- two price elasticities: 

lr
M

lr

l
rl

M

lr

r
rl

S

SS
S

SS
S

σσσ
+

+
+

=  (4) 

After some computation, Allen elasticities can be written as: 
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+
∂
∂
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(5) 

Thus, in order to compute such elasticities for our different cost function models, it is 

important to compute the partial derivative ∂ Sr/∂ lnPl.7 

 

[TABLE 6 HERE] 

 

As can be seen in table 6, except from Allen elasticities for the input pair drugs-capital, 

all inputs are substitutes, but the low estimated values suggest that substitution 

possibilities are in general very limited. As an example, in the PBG specification, σM
MS,K 

= 0.13, suggesting that a 10% increase in the price of capital implies only a 1.3% change 

in the MS/K ratio. The higher figures are recorded for the input pairs involving AS, 

suggesting that the other three inputs (medical staff, drugs and capital) are particularly 

responsive to increases in the price of administrative staff (σM
r,AS are higher than σM

AS,r 

for all r). The results are remarkably stable across specifications for almost all input 

pairs, and are broadly consistent with the ones previously appeared in the empirical 

literature. As discussed in Section 2, e.g. Jensen and Morrisey (1986) found substitution 

elasticities equal to 0.25 for the pair medical staff/beds and equal to 0.19 for the pair 

nurses/beds. Bilodeau et al. (2002) found that labour and drugs were substitutes with 

substitution elasticities lower than 1. As far as capital is concerned, the substitution 

possibilities with other inputs are lower, i.e. the values of σM
r,K are lower than all the 

other σM
r,l couples and the values of σM

K,r are lower than all the other σM
l,r couples. 

                                                 
7 In the ST, GT and SQ specifications, such derivative trivially corresponds to the coefficient βrl, while in 
the other two specifications (PBG and PBC) its computation is much more complicated, as it can be seen 
from a close inspection at equation (2). 
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Our results can be affected by two potential sources of distortions. On the one hand, 

since we estimate a cost function, we use the implicit assumption of cost minimization. 

By taking into account the inefficiency in the provision of health care services, how will 

the results on input substitutability be affected? Unfortunately, we are not able to 

estimate jointly a system of cost functions and related cost share equations in a stochastic 

frontier framework. Without the inclusion of the information on input cost shares the 

results coming from one equation frontier models, as far as input substitutability is 

concerned, are in generally very poor8. However, some past studies found that there are 

no substantial differences among technological estimates coming from average and 

frontier cost functions for hospitals (e.g. Eakin and Kniesner, 1988). 

The second issue is that, even if one remains confined within a cost function analysis, 

our sample of firms is affected by a regulatory intervention aimed at hospital downsizing 

by means of the reduction in the number of beds. It turns out that our estimates of 

substitution elasticities are computed without taking into account the constrained 

environment in which hospitals are operating. Unfortunately, the constraints are imposed 

at the regional level (i.e., the target of reducing the number of beds must be reached for 

the whole Piedmont region), so that we cannot include the constraint in our specification 

of the cost function. However, we are confident that the presence of constraints is not 

seriously biasing the estimates for input elasticities. For example, Granderson and Lovell 

(1998) were able to introduce a firm-specific variable accounting for rate of return 

regulation in the gas industry and found that such regulation increased the estimates of 

elasticity of substitution of σM
K,r pairs and reduced those of σM

r,K pairs. Since in our case 

the constraint pushes toward the reduction of beds, it is reasonable to assume that in an 

unregulated framework one should observe higher values for σM
r,K couples and lower 

values for σM
K,r pairs. Looking at the figures in table 6, this means that the values of such 

pairs should get closer the ones to the others, thus making Morishima elasticities more 

symmetrical and leaving almost unchanged the values of Shadow elasticities. 

 

[TABLE 7 HERE] 

 

                                                 
8 Very recently, Kumbakhar and Tsionas (2005) showed how to estimate cost (technical and allocative) 
inefficiency by recurring to simulation-based Bayesian inference procedures in a well-specified Translog 
system including the cost frontier and related cost-share equations. 
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Table 7 presents the estimates of Shadow elasticities of input substitutability when the 

productive scale (Y ) and the DRG weight (DRGW) of the average hospital of our sample 

are increased (and reduced) proportionally, focusing on the cost function model best 

fitting the data, i.e. the PBG specification. Parameters λY and λDRGW refer to the 

coefficients used to scale down (λY = 0.25, 0.5; λDRGW = 0.5) and up (λY = 2, 3; λDRGW = 

2) the average values of the output (Y = 22,072 patients) and DRG weight (DRGW = 

1.12), respectively. First, notice that for almost all input pairs (with the notable exception 

of MS-AS), it emerges a certain degree of complementarity only by scaling down the 

average producer. Even if estimated elasticities are always insignificant at the usual 

confidence levels, this result suggests a higher rigidity in managing inputs for small-

scale low-complexity generalist community hospitals, for instance because they need to 

respect exogenously given standards for staff and beds, which are binding given their 

volumes of output. Clearly enough, this rigidity helps explain the findings of unexploited 

scale economies for very small hospitals. Second, note that by scaling up the average 

hospital, both with respect to output volume and with respect to output complexity, 

substitution possibilities (and statistical significance) increase, but substitutability remain 

fairly small and significantly less than unity. These results hold even scaling up 

contemporaneously the average hospital in the two mentioned directions. For instance, 

concentrating on the most interesting of these input pairs for us (MS-K), by doubling the 

DRG weight and tripling output volume, elasticity of substitution rises from 0.14 to 0.30 

only. Notice also that – for the MS-K pair – holding constant output volume at λY = 3, it 

emerges a slight decrease of substitution possibilities when increasing complexity of 

output. This last result shows up also for almost all other couples of inputs, and suggests 

that – at high volumes – substitution between factors becomes increasingly difficult 

when also complexity of treated patients increase. This finding is consistent with a high 

rigidity of the production process starting from high levels of output. Results are more 

ambiguous when holding DRG weights fixed at λDRGW = 2: increasing the levels of 

output ease substitutability for the MS-K, D-K, and K-AS pairs, while substitutability 

worsens for the remaining couples of inputs. Finally, note that for the MS-AS input pair, 

estimated elasticities are invariant both to scaling with respect to output volume and to 

scaling with respect to output complexity, being consistently close to unity (and 

statistically significant). Besides showing that these two inputs are the more substitutable 

in the production process of hospitals, this result suggests that Administrative Staff is not 
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probably a source of production economies. Overall, our findings confirms then previous 

estimates in the literature, validating the difficulties for hospitals in substituting between 

input pairs, in particular between medical staff and beds.  

4. Concluding remarks 

The hospital industry in many countries has undergone an unprecedented process of 

restructuring, aimed at reducing excess capacity and increasing the appropriateness of 

care. The process has been characterised by bed downsizing, while the management and 

planning of workforce has been conducted using fixed ratio relationships with no 

empirical validity, often causing a change in the input-mix used in the production of 

hospital services. In this paper we investigate the economic rationality of this change, 

providing new evidence on the factor substitutions characterising hospitals’ technology. 

We consider a sample of regional producers located in Piedmont, a region in the North-

Western part of Italy. As in other countries, also in this case the hospital industry has 

been (and still is) marked by a wide reduction in the number of beds, while no significant 

decrease has been observed for medical staff (including both physicians and nurses). 

Differently from other studies, we do not impose a priori restrictions on the functional 

form of the hospital cost function, and estimate a more general model, namely the 

Generalised Composite. The multi-product cost functions are estimated jointly with their 

associated input cost-share equations. For all the models, we derive Allen, Morishima 

and Shadow elasticities of substitution between input pairs, obtaining a fairly consistent 

picture across all specifications and elasticity concepts. In particular, confirming 

previous findings in the literature, our results suggest a very limited degree of 

substitutability between factors in the production of hospital services. This is particularly 

true for beds and medical staff. Given this evidence, one can notice that putting 

restrictions on bed capacity, without keeping into account the limited possibility of 

substitution of this factor with the other ones, might imply an inefficient use of resources 

and severely limit the possibility to control public health expenditure by restructuring the 

hospital industry. 
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Table 1. Breakdown of total operating costs for ASL and AO units 

 2000 2001 2002 2003 2004

 ASL 

Labour 36.1% 34.6% 33.4% 25.2% 25.0%

Medical Staff 28.0% 26.7% 25.8% 19.5% 19.2%

Materials and services 59.5% 62.2% 63.2% 72.1% 72.3%

Materials 9.0% 8.6% 10.7% 7.2% 7.2%

Drugs 2.7% 2.8% 3.1% 2.9% 3.1%

Operating Services Contracted Out 2.1% 2.2% 2.1% 1.7% 1.7%

Other Outsourced Services  46.6% 49.0% 48.4% 61.4% 61.8%

Administrative Costs 2.3% 1.0% 1.1% 0.9% 1.0%

Depreciation 1.4% 1.5% 1.6% 1.2% 1.1%

Other costs 0.7% 0.7% 0.7% 0.6% 0.6%

Total Operating Costs (103 €) 190,086 205,150 216,115 295,099 311,600

 AO 

Labour 59.4% 56.8% 56.4% 53.0% 52.8%

Medical Staff 45.3% 43.1% 43.3% 40.9% 40.3%

Materials and services 32.9% 36.1% 36.3% 40.1% 40.0%

Materials 19.3% 20.1% 20.5% 21.0% 23.2%

Drugs 6.5% 6.5% 6.9% 7.3% 8.3%

Operating Services Contracted Out 4.2% 5.2% 5.3% 5.0% 5.3%

Other Outsourced Services  6.5% 7.1% 6.6% 9.9% 7.4%

Administrative Costs 3.4% 2.1% 2.1% 2.2% 2.3%

Depreciation 2.8% 3.2% 3.4% 3.2% 3.1%

Other costs 1.4% 1.8% 1.8% 1.6% 1.8%

Total Operating Costs (103 €) 163,013 175,424 188,420 203,450 208,720

 

 
 
Table 2. Breakdown of operating hospital costs (OHC) for ASL and AO (average 2000-2004) 

 ASL AO 

Labour 87.6% 84.7% 

Medical Staff  67.4% 64.8% 

Drugs   8.5% 10.6% 

Depreciation   3.9%   4.7% 

Operating hospital costs (103 €) 78,628 121,558 
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Table 3. Descriptive Statistics   

 Mean St. Dev. Min Median Max 

Operating Hospital Cost (103 €)   

Labor + Drugs + Capital cost 88,990 42,985 29,262 86,495 309,694

Production data    

Total number of patients (Y ) 22,072 13,237 639 19,728 68,715

Average DRG weight (DRGW ) 1.12 0.20 0.64 1.06 1.93

Total in-patients days 142,171 83,617 18,400 131,396 576,810

Total number of beds (K ) 521 294 62 485 1,848

Input prices      

Medical Staff (€ per MS worker) 46,181 2,133 41,665 46,319 55,572

Administrative Staff (€ per AS worker) 26,544 1,841 22,053 26,310 31,170

Drugs (€ per in-patients day) 63 31 21 57 200

Capital (€ per bed) 8,051 3,715 3,016 7,170 22,859

Input cost-shares   

Medical Staff (SMS) 0.67 0.04 0.57 0.67 0.75

Administrative Staff (SAS) 0.20 0.03 0.14 0.20 0.30

Drugs (SD ) 0.09 0.03 0.03 0.09 0.20

Capital (SK ) 0.04 0.01 0.02 0.04 0.09
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Table 4. NLSUR parameter estimates for the Generalised Composite (PBG), Composite (PBC), 
Separable Quadratic (SQ), Generalised Translog (GT) and Standard Translog (ST) models 

REGRESSORS a PBG MODEL PBC MODEL SQ MODEL GT MODEL ST MODEL 

Constant  1.004***  0.995***  1.003*** -0.021  0.982*** 
Y          0.717***  0.638***  0.683***  0.622***  0.638*** 
DRGW   0.391***  0.479***  0.553***  0.367***  0.441*** 
lnPMS  0.658***  0.658***  0.661***  0.660***  0.658*** 
lnPD   0.100***  0.101***  0.095***  0.098***  0.100*** 
lnPK  0.046***  0.046***  0.043***  0.044***  0.046*** 
TREND  0.003  0.002  0.004  0.011  0.008 
Y 2

 -0.321 -0.113 -0.136** -0.241  0.187* 
DRGW 2         0.322  0.031  0.002 -0.141 -0.560 
Y DRGW  0.526  0.613***  0.587***  0.272  0.214 
Y lnPMS -0.013 -0.011  0 -0.016* -0.010 
Y lnPD  0.019***  0.018***  0  0.021***  0.017*** 
Y lnPK  0.012**  0.011**  0  0.012**  0.010* 
DRGW lnPMS -0.025** -0.024*  0 -0.035** -0.034** 
DRGW lnPD  0.037***  0.037***  0  0.048***  0.048*** 
DRGW lnPK  0.012  0.012  0  0.015  0.015 
lnPMs PAS   0.010  0.007 -0.004  0.005  0.006 
lnPMs PD -0.046*** -0.046*** -0.043*** -0.044*** -0.044*** 
lnPMs PK -0.029*** -0.028*** -0.023*** -0.027*** -0.027*** 
lnPAs PD -0.010 -0.009  0.001 -0.004 -0.006 
lnPAs PK  0.004  0.002  0.007  0.006  0.003 
lnPD PK -0.012** -0.012*** -0.017*** -0.014*** -0.013*** 
Box-Cox φ -0.446* -0.260 -0.260  0  0 
Box-Cox π  1.219***  1  1  0.563***  0 
Box-Cox τ  0.015  0  0  1  1 

System log-likelihood 1406.581 1402.422  1315.912   1385.590 1377.424 
System R 2 b  0.863  0.859  0.832  0.849  0.858 
- Cost function R 2   0.921  0.918  0.916  0.918  0.916 
- SMS equation R 2   0.514  0.507  0.446  0.528  0.512 
- SD equation R 2  0.769  0.771  0.581  0.766  0.782 
- SK equation R 2  0.571  0.592  0.073  0.518  0.570 

a The dependent variable is Operating Hospital Costs (OHC). 
b The goodness-of-fit measure used for NLSUR systems is McElroy’s (1977) R 

2. 
*** significant at 1 % level, ** significant at 5 % level, * significant at 10 % level (two-tailed test). 

 

 20



 

Table 5. Comparing Generalised Composite (PBG) against restricted models by LR tests 

Restricted model a χ2-statistic P-value 

PBC MODEL  (π = 1, τ = 0) 8.318 0.016 

SQ MODEL (π = 1, τ = 0, δYr = δDRGWr = 0 for all r ) 181.338 0.000 

GT MODEL (φ = 0, τ = 1) 41.983 0.000 

ST MODEL (φ = 0, π = 0, τ = 1) 58.314 0.000 
a The restrictions with respect to PBG model are reported in parentheses. 
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Table 6. Estimates of input substitutability elasticities (at mean values of output, average 
DRG weight and input prices) for different cost function models a   

Allen elasticities  
(1 factor, 1 price) 

PBG MODEL PBC MODEL SQ MODEL   GT MODEL     ST MODEL 

MS, K 0.02 (0.27) 0.09 (0.25) 0.17 (0.25) 0.06 (0.26) 0.10 (0.26)

MS, D 0.31 (0.13) 0.31 (0.12) 0.32 (0.12) 0.31 (0.12) 0.33 (0.13) 

MS, AS 1.08 (0.30) 1.05 (0.30) 0.87 (1.23) 1.04 (0.28) 1.05 (0.30)

D, K -1.62 (1.16) -1.56 (1.01) -3.30 (0.59) -2.26 (0.85) -1.94 (1.00)

D, AS 0.50 (0.57) 0.52 (0.54) 1.06 (0.38) 0.78 (0.47) 0.67 (0.53)

K, AS 1.39 (1.33) 1.22 (1.18) 1.85 (0.95) 1.66 (1.06) 1.38 (1.22)

Morishima elasticities 
(2 factors, 1 price)  

PBG MODEL PBC MODEL SQ MODEL GT MODEL     ST MODEL 

MS, K 0.13 (0.13) 0.14 (0.11) 0.18 (0.10) 0.15 (0.11) 0.15 (0.12)

K, MS 0.26 (0.18) 0.30 (0.17) 0.34 (0.17) 0.28 (0.18) 0.31 (0.18)

MS, D 0.26 (0.05) 0.20 (0.05) 0.31 (0.06) 0.29 (0.06) 0.29 (0.06)

D, MS 0.45 (0.09) 0.44 (0.09) 0.44 (0.09) 0.45 (0.09) 0.46 (0.09)

MS, AS 1.04 (0.28) 1.01 (0.28) 1.00 (0.43) 1.03 (0.26) 1.02 (0.28)

AS, MS 0.95 (0.25) 0.93 (0.25) 0.81 (0.86) 0.92 (0.24) 0.93 (0.25)

D, K 0.05 (0.10) 0.07 (0.11) 0.03 (0.11) 0.05 (0.12) 0.05 (0.12)

K, D 0.06 (0.13) 0.08 (0.08) -0.03 (0.07) 0.04 (0.08) 0.06 (0.08)

D, AS 0.92 (0.29) 0.90 (0.28) 1.04 (0.22) 0.99 (0.25) 0.95 (0.29)

AS, D 0.28 (0.09) 0.29 (0.09) 0.38 (0.08) 0.34 (0.09) 0.33 (0.09)

K, AS 1.10 (0.40) 1.04 (0.38) 1.20 (0.29) 1.16 (0.32) 1.09 (0.38)

AS, K 0.19 (0.18) 0.16 (0.15) 0.25 (0.13) 0.22 (0.14) 0.20 (0.17)

Shadow elasticities      
(2 factors, 2 prices) 

PBG MODEL PBC MODEL SQ MODEL GT MODEL       ST MODEL 

MS, K 0.14 (0.12) 0.15 (0.10) 0.19 (0.10) 0.16 (0.10) 0.16 (0.12)

MS, D 0.28 (0.05) 0.29 (0.05) 0.33 (0.06) 0.31 (0.06) 0.31 (0.06)

MS, AS 1.02 (0.27) 0.99 (0.27) 0.95 (0.53) 1.01 (0.25) 1.00 (0.28)

D, K 0.06 (0.10) 0.07 (0.09) 0.01 (0.09) 0.05 (0.10) 0.06 (0.10)

D, AS 0.50 (0.14) 0.50 (0.14) 0.59 (0.11) 0.55 (0.13) 0.54 (0.15)

K, AS 0.36 (0.21) 0.36 (0.18) 0.41 (0.15) 0.39 (0.16) 0.37 (0.20)

a Estimated asymptotic standard errors in parentheses. MS = Medical Staff, AS = Administrative Staff, D = 
Drugs, K = Capital (number of beds).   
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Table 7. Estimates of Shadow elasticities of input substitutability by scaled values of the 
average output and DRG weight (PBG model, average input prices) a 

Scaling procedure for DRG weight (DRGW )  Scaling procedure for 
the output (Y ) λDRGW  = 0.50 λDRGW  = 1  

(average value) 
λDRGW  = 2 

MS, K λY  = 0.25 -1.20 (1.52) -0.34 (0.51) 0.26 (0.32) 

 λY  = 0.50 -0.42 (0.54) -0.05 (0.22) 0.26 (0.23) 

 λY  = 1 (average value) 0.00 (0.24) 0.14 (0.12) 0.26 (0.16) 

 λY  = 2 0.23 (0.16) 0.26 (0.11) 0.28 (0.16) 
 λY  = 3 0.39 (0.19) 0.34 (0.15) 0.30 (0.19) 

MS, D λY  = 0.25 -0.75 (0.53) 0.04 (0.14) 0.48 (0.16) 

 λY  = 0.50 -0.19 (0.18) 0.18 (0.08) 0.45 (0.11) 

 λY  = 1 (average value) 0.12 (0.08) 0.28 (0.05) 0.42 (0.08) 

 λY  = 2 0.30 (0.07) 0.36 (0.05) 0.40 (0.09) 

 λY  = 3 0.41 (0.12) 0.41 (0.09) 0.41 (0.12) 

MS, AS λY  = 0.25 1.01 (0.22) 1.01 (0.24) 1.02 (0.29) 

 λY  = 0.50 1.01 (0.24) 1.02 (0.26) 1.02 (0.29) 

 λY  = 1 (average value) 1.02 (0.25) 1.02 (0.27) 1.02 (0.29) 

 λY  = 2 1.02 (0.28) 1.02 (0.28) 1.02 (0.29) 

 λY  = 3 1.03 (0.31) 1.02 (0.30) 1.02 (0.29) 

D, K λY  = 0.25 -1.61 (1.33) -0.45 (0.43) 0.22 (0.29) 

 λY  = 0.50 -0.64 (0.43) -0.14 (0.17) 0.22 (0.21) 

 λY  = 1 (average value) -0.14 (0.19) 0.06 (0.10) 0.21 (0.15) 

 λY  = 2 0.14 (0.14) 0.19 (0.11) 0.22 (0.16) 

 λY  = 3 0.31 (0.19) 0.27 (0.16) 0.24 (0.20) 

D, AS λY  = 0.25 -0.57 (0.58) 0.25 (0.20) 0.68 (0.18) 

 λY  = 0.50 0.00 (0.25) 0.39 (0.15) 0.65 (0.15) 

 λY  = 1 (average value) 0.33 (0.17) 0.50 (0.14) 0.63 (0.15) 

 λY  = 2 0.52 (0.16) 0.57 (0.15) 0.62 (0.17) 

 λY  = 3 0.63 (0.19) 0.63 (0.18) 0.62 (0.19) 

K, AS λY  = 0.25 -1.00 (1.58) -0.13 (0.57) 0.50 (0.36) 

 λY  = 0.50 -0.21 (0.60) 0.17 (0.29) 0.50 (0.27) 

 λY  = 1 (average value) 0.21 (0.31) 0.36 (0.21) 0.50 (0.23) 

 λY  = 2 0.46 (0.24) 0.49 (0.20) 0.51 (0.24) 

 λY  = 3 0.62 (0.26) 0.58 (0.23) 0.53 (0.27) 

a Estimated asymptotic standard errors in parentheses. Bold typeface values indicate 10% (or lower) 
significance level. MS = Medical Staff, AS = Administrative Staff, D = Drugs, K = Capital (number of beds).  
 


