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ROLE EFFECTS IN EDUCATION TRANSMISSION

VALENTINO DARDANONI, ANTONIO FORCINA, AND SALVATORE MODICA

Abstract. Recent literature has analyzed the impact of parents’ educa-
tion on children’s by controlling for parents’ unobservable endowments. By
applying recent advances in latent class analysis as a tool for modeling indi-
vidual heterogeneity, we study the direct causal effect of parents’ education
conditional on children’s unobservable schooling endowment. We interpret
this effect as reflecting social-norms based parental pressure, and we call it
a role effect. In the UK NCDS dataset that we use we find that this effect
is sizeable, and by looking separately at sons and daughters subsamples it
emerges that it is mostly confined to the father–son relationship.

JEL Classification Numbers I21, C35
Keywords Education Transmission, Unobserved Endowments, Finite Mix-
tures, Direct Causal Effect.

1. Introduction

The present research is concerned with the widely studied problem of mea-

suring the effect of family background on educational achievement, taking into

account individual unobserved heterogeneity. In particular we are interested

in the role of mothers and fathers in education transmission, upon which con-

trasting evidence reported in recent studies (see e.g. the survey by Holmlund–

Lindahl–Plug [26], more below) calls for reflection.

It is by now well appreciated that finding a positive association between par-

ents’ and children’s education level may simply reflect correlation between un-

derlying unobserved heritable endowments: better endowed parents are more

educated and have better endowed, hence more educated, children. To discuss

the causal relations between parents’ and children’s unobservable endowments

Up, U c and their schooling Sp, Sc it may be useful to start with a simple system

of linear equations:

Sc = a+ bSp + cU c + ε (1)

U c = d+ eSp + fRp + gUp + η ,

Date: January 30, 2007.
1
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where Rp denotes the parent’s child-rearing ability; we consider here a single

parent for illustration, and ε, η are assumed uncorrelated with the covariates.

The first equation says that a person’s education depends on her schooling

endowment and her parents’ education. In fact, given her own endowment

U c, it is not obvious why parents’ education should enter the function as an

independent argument, and we shall shortly discuss this point. The second

equation can be considered a typical nature–nurture relation; upon substitu-

tion in the above equations one obtains the standard reduced form equation

(compare equation (2) in [7] or equation (9) in [26]):

Sc = α+ βSp + γRp + δUp + ψ. (2)

Equation (2) shows that the marginal causal effect of Sp on Sc, namely β =

b + ce, can be decomposed into a component which captures the impact of

parents’ schooling on children’s endowments, and, if b 6= 0, a direct effect

independent of endowments transmission. Clearly estimation of the marginal

causal effect (β in equation (2)) requires controlling for Up; on the other hand,

estimation of the causal effect of Sp conditional on the child’s endowment (b in

equation (1)) requires controlling for U c. This is apparent in the above linear

equations, but as we show in the Appendix (section 6.1) it continues to hold in

the nonlinear context of discrete response variables which will be the setting

of the present paper.

Estimation of the effect of parents’ education after controlling for their un-

observable endowments has been the object of recent research initiated by

Behrman and Rosenzweig [7], who challenge conventional wisdom (cfr. the

classical surveys [6, 24]) that parents’ schooling has significant effect on their

children’s (and that generally mothers’ schooling has a greater effect than

fathers’), on the grounds that, without proper control for unobservable en-

dowments, resulting estimates may be biased and reflect correlation but not

causation. Behrman and Rosenzweig arrive at the striking result that mothers’

education has no effect on children’s after controlling for parents’ endowments

by taking differences on MZ twin parents.1 In two important follow-ups of

Behrman–Rosenzweig [7], Plug [31] using adoptees confirms the finding that

1To illustrate, under the assumption that MZ twins’ endowments and child-rearing abilities
are equal, denoting twins by subscripts 1 and 2 we have Up

1 = Up
2 and Rp

1 = Rp
2, whence by

taking differences in equation (2) above one gets Sc
1 − Sc

2 = β(Sp
1 − Sp

2 ) + ϕ, from which an
unbiased estimate of β can be obtained if (Sp

1 − Sp
2 ) 6= 0 for a sufficient number of subjects.
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only the father’s education has a positive impact on the child’s, while Black–

Devereux–Salvanes [11], using reforms in municipal compulsory schooling laws

as instruments, find almost no causal link between parents’ and children’s

education.2

The difficulties in controlling for parents’ unobservable endowments are il-

lustrated in the survey by Holmlund–Lindahl–Plug in [26], where these three

different methods (namely use of twins, adoptees and schooling laws instru-

ments) are applied to a single data set, and it is shown that the three ap-

proaches produce results which are in conflict with each other.3 The fact that

estimates of β may be quite sensitive to the key assumptions made in the pro-

cess is compounded with the problem that separate estimation of fathers’ and

mothers’ effects requires control for assortative mating.

In this paper we consider the causal effect of parents’ education on their

children’s after controlling for children’s unobservable schooling endowment

(the analogy with the simple linear model (1) and (2) would be that we estimate

b rather than β). In the terminology of the literature on causality (see e.g.

Pearl [30] page 126) this is called a direct effect. For this purpose we consider

as dependent variable, rather than years of schooling, an indicator of schooling

attainment in terms of achievement of a significant educational certification,

since this is more likely to reflect the value assigned to education by the subjects

and their parents. In the context of the British educational system, such a

certification is represented by the O-Level exams, which are passed by about

50% of our sample of students born in UK in 1958 (see section 2 below). By

exploiting the unique features of the English NCDS dataset, which contains

information on a rich set of education related variables taken from very early

age, we identify the unobserved children’s schooling endowment U c by using

a finite mixture model (the implied meaning of U c is described on page 10

below).

The natural interpretation of the effect we look at emerges by asking why,

among subjects with a given level of schooling endowment, those with more

2On Behrman and Rosenzweig see also the critical Comment [1] by Antonovics and Gold-
berger (and the authors’ Reply [8]). Intergenerational education transmission is also ana-
lyzed by Bjorklund–Lindahl–Plug [10], Dearden–Machin–Reed [17] and Sacerdote [32], [33]
using adoptees, and by Chevalier [15] and Oreopoulus–Page–Stevens [29] using schooling
laws instruments.
3“The twin and adoption methods give us positive intergenerational schooling coefficients
for fathers but no effects for mothers. Whereas the IV strategy indicates that it is only the
mother’s education that is important”, [26], p.51.
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educated parents should attain higher educational levels. The answer may be

that they have stronger social motivation, which is what the effect reflects.

The effect may include, for example, the intergenerational transmission of

education-dependent labor markets skills, better information on the value of

education, or simply greater parental pressure reflecting social norms. We call

it a role effect. In any given social context, note that this kind of influence is

typically gender dependent, in the sense that mothers and fathers may have

different effects on daughters and sons.4

Our econometric analysis exploits recent advances in the theory of marginal

modelling (see e.g. Bergsma and Rudas [5]), which allow identification and

estimation of finite mixture models where not only response variables may

depend on covariates, but also some residual association between them is per-

mitted. The actual regression system we estimate is displayed in (5) on page

12 below.

The empirical findings we report confirm the presence of role effects in our

sample: given the child’s schooling ability, more educated parents bring their

offsprings to a greater level of education. In fact, in the pooled sample of

sons and daughters only fathers’ education is found to have a positive impact

on children’s. But the nature of the effect we estimate appears more neatly

by examining its gender dependence: when the sons and daughters samples

are analyzed separately, it is seen that fathers’ education affects only that of

their sons; mothers’ education has a weak (and not significant) effect, only

on daughters. It may be worth noting that this strong father–son link, which

reflects the social-norms based pressure that families put on children for educa-

tional attainment, may well be confined to the social context to which our data

refers. We discuss these findings in the conclusions after we present estimation

results.

The rest of the paper is organized as follows. The data are described in

section 2; we then derive the model to be estimated (section 3) and report the

results of estimation (section 4). Section 5 contains some concluding remarks.

In the Appendix we explain the details of the identification and estimation of

our model using likelihood inference techniques.

4In studies of educational attainment, early mention of the possibility of interclass differences
in educational choice at given levels of academic performance is found in Boudon [13], who
called this a ‘secondary effect’. Erikson et al. [20] confirm the presence of this effect by
counterfactual analysis.
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2. The Data Structure

In the British educational system, students at the age of 16 take the so called

O-Level exams on a set of chosen topics. If a student has reached a minimum

standard in terms of quantity of subjects taken and grades obtained, she is

awarded an O-Level certification and allowed, if she wishes, to access the next

level of education (the so-called A-Level).

We use data from the National Child Development Survey (NCDS). This

data set is a UK cohort study targeting all the population born in the UK be-

tween the 3rd to the 9th of March 1958. Individuals were surveyed at different

stages of their life and information on their schooling results and their back-

ground was collected. Our main dependent variable is the binary variable OL

which takes value 1 iff the subject has obtained the necessary formal O-Level

qualifications; in our sample about fifty percent of the subjects achieve them.5

6

A rather unique feature of the NCDS is that subjects were tested for reading

and mathematical ability at the early age of seven and then again at eleven

and sixteen. These math and reading test score results can be used for iden-

tification of the unobservable endowment U c. Here we use binary response

variables extracted from the cognitive tests which act as multiple indicators

for U c, with the dichotomized variables taking value 1 iff the subject’s score

is at or above the sample median. These binary variables will be denoted as

M16, R16,M11, R11,M7, R7, where M,R stand for math and reading and sub-

scripts denote the age at which the tests are taken.

Parents’ schooling is defined as the age at which they left school; fathers’

and mothers’ schooling are collected into the vector x. Regarding other family

background variables, the NCDS contains also information on parents’ inter-

est in their child’s education, as reported by teachers separately for mothers

and fathers; this can be considered a proxy for child-rearing ability Rp. Data

on parents’ interest are originally classified into 5 distinct categories (over-

concerned, very interested, shows some interest, little interest, can’t say); we

have chosen to group them into two (interested in the first three cases and

not interested in the last two), so that a parent’s interest is indicated by a

5Since attainment of O-Level certification is the first significant schooling continuation de-
cision made by UK students, considering this as the dependent variable avoids the dynamic
selection bias problem pinned down by Cameron-Heckman [14].
6The same data set is extensively used, among others, by Blundell–Dearden–Sianesi [12],
who study the effect of education on earnings.



6 VALENTINO DARDANONI, ANTONIO FORCINA, AND SALVATORE MODICA

single dummy. To allow for possible capital market imperfections, we include

also family income in the set of family background variables. The two parents’

interest variables and family income are collected in the vector z; the vector

of all five family background characteristics is denoted by b = (x, z).7

From the NCDS we selected all subjects for whom we had information on

OL, test scores and b; the resulting sample is made of 4553 subjects, 2308

males and 2245 females. Summary statistics on the data used are reported in

Table 1 below. A complete description of the data is available at

http://www.esds.ac.uk/longitudinal/access/ncds.

Avg daughters Avg sons short name type

O-Level 0.5465 0.4861 OL dummy
Math at 16 0.4980 0.5750 M16 dummy
Reading at 16 0.5416 0.5823 R16 dummy
Math at 11 0.5376 0.5290 M11 dummy
Reading at 11 0.5225 0.5199 R11 dummy
Math at 7 0.4450 0.4900 M7 dummy
Reading at 7 0.5889 0.4870 R7 dummy
Father schooling 14.9327 14.8930 fs numerical
Mother schooling 14.9871 14.9302 ms numerical
Father interest 0.6735 0.6720 fi dummy
Mother interest 0.7430 0.7132 mi dummy
Family income 16.7995 16.7093 ty numerical

Table 1. Data

3. Unobserved endowments and finite mixture models

3.1. Preliminary remarks, notation and examples. The finite-mixture

approach is well known and much used in many branches of statistics such as

biometrics and psychometrics (see e.g. [28, 35]). An early use in economics

is in Heckman and Singer [25]; recently, it has been mainly used in dynamic

models, with several applications to scholastic achievements. Arcidiacono and

Jones [2] contains an ample discussion of this literature.

Consider a set of k binary response variables Yj, j = 1, . . . , k, taking values

yj ∈ {0, 1}, where, as usual, lower case letters denote observed values of the

corresponding capital-letter random variables. A given response configuration

7We also considered parents’ age, but dropped it from the analysis because it was never
found significant.
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will be denoted by the column vectors y = (y1, . . . , yk)
′
and qy will denote the

probability of a given response configuration. Now order the response patterns

lexicographically, with elements on the right running faster from 0 to 1. A

probability distribution on the set of the 2k distinct response configurations

will be represented by the vector q having elements qy ordered as above; this

vector belongs to the simplex ∆2k .

The following simple example introduces some elementary ideas which will

hopefully clarify the approach we take in this paper. Let q ∈ ∆4 denote the

distribution of two binary response variables Y1 and Y2. Since probabilities

add to one, we can describe q by an appropriate choice of 3 free parameters,

where a parameter is any real valued function of q. For example, q could be

defined by two parameters describing the univariate marginals and a parameter

describing their association such as Pr(Yi = 1), i = 1, 2 and Pr(Y1 = 1, Y2 = 1).

However, this parameterization is not unique; any invertible function of these

3 parameters can be considered equivalent, and depending on the purpose at

hand alternative parameterizations may be preferable. For example, using 2

logits to describe the univariate marginals

λY1 = log

[
Pr(Y1 = 1)

Pr(Y1 = 0)

]
, λY2 = log

[
Pr(Y2 = 1)

Pr(Y2 = 0)

]
,

and a second order logit interaction parameter (also called log-odds ratios) to

describe the bivariate association

λY1,Y2 = log

[
Pr(Y1 = 0, Y2 = 0) Pr(Y1 = 1, Y2 = 1)

Pr(Y1 = 1, Y2 = 0) Pr(Y1 = 0, Y2 = 1)

]
= λY1|Y2=1 − λY1|Y2=0 = λY2|Y1=1 − λY2|Y1=0

gives an invertible mapping from ∆4 to R3, and thus can be considered as

an equivalent alternative parameterization of q since it conveys all relevant

information on the joint distribution of Y1, Y2 (see e.g. Bartolucci–Colombi–

Forcina [3] for a general recursive definition of logit parameters and a discussion

on their invertibility properties).

The above marginal parameterization is not unique; for comparison, con-

sider the following recursive model: λY1 = a1 and λY2|Y1 = a2 + a3Y1. The 3

parameters a1, a2, a3 form again an invertible mapping from ∆4 to R3; notice

also that by the definitions above a2 = λY1,Y2 ,
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Assuming that association parameters are zero clearly implies that q belongs

to a subset of ∆4; for example, if we assume that Y1 and Y2 are independent:

Pr(Y1 = y1, Y2 = y2) = Pr(Y1 = y1) Pr(Y2 = y2),

then any q ∈ ∆4 which satisfies the above relation can be uniquely described

by two parameters such as Pr(Y1 = 1), Pr(Y2 = 1) or equivalently λY1 and λY2 .

Finally, suppose that Y is an ordinal variable taking values y ∈ {0, 1, . . . , t}.
A natural generalization of the binary logits above is obtained (exploiting the

ordered nature of the support of Y ) by the so called global logits γ1
Y , . . . , γ

t
Y :

γy
Y = log

[
Pr(Y ≥ y)

Pr(Y < y)

]
, y = 1, . . . , t.

It can be seen that global logits are equivalent to standard logits under suc-

cessive dichotomization of the support of Y ; notice also that the set of global

logits γ1
Y , . . . , γ

t
Y forms an invertible parameterization of the distribution of Y

under the assumption that γ1
Y ≥ · · · ≥ γt

Y .

3.2. Classical latent class analysis. Given observed binary responses (Y1, . . . , Yk),

classical latent class analysis (e.g. Goodman [21]) tries to identify a discrete

random variable U taking values in {0, 1, . . . ,m} such that

Pr(Y1 = y1, . . . , Yk = yk) =∑
u
Pr(U = u) Pr(Y1 = y1 | U = u) · . . . . . . · Pr(Yk = yk | U = u); (3)

that is, the unobservable latent variable U makes observed responses condi-

tionally independent. Clearly this assumption (which is known in the latent

class literature as local independence) restricts the dimension of the probability

space of (U, Y1, . . . , Yk) ≡ (U,Y ) from (m+1) ·2k−1 to m+(m+1) ·k. Indeed,

any p ∈ ∆(m+1)·2k which satisfies relation (3) is uniquely determined by the

following parameters: Pr(U ≥ u) for u = 1, · · · ,m, and Pr(Yi = 1 | U = u)

for i = 1, . . . , k, u = 0, . . . ,m. Notice however that, since U is not observed,

the dimension of the space of the observed responses is only 2k − 1, and this

restricts the number of classes of U which can be identified, since m+(m+1)·k
must be less than or equal to 2k − 1.

3.3. The model estimated in this paper. Since the child’s endowment

will be the only latent variable which we model explicitly, we will omit the

superscript c from U c. To identify the unobservable child’s endowment U one

can extract information from response vectors which act as multiple indicators
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of the latent variable U and, as in finite mixture models, we will assume that

U is a discrete random variable taking values in {0, 1, . . . ,m}.
As indirect indicators of schooling ability we shall use dichotomized obser-

vations on maths and reading test scores. To be more specific note that in

the case at hand the unobservable residual heterogeneity affecting a given ed-

ucational attainment (the English O-Level certification in our case) can be

seen as the result of two different factors: early schooling endowments and

relevant knowledge acquired through learning. Since this is the individual

heterogeneity which our latent variable U should capture, we shall have it

jointly identified, besides OL itself, by early indicators of innate mathematical

and reading comprehension on the one hand, and by indicators of the level of

acquired knowledge on the other.

As early indicators we take performance in math and reading tests taken at

7 and 11 years of age; as indicators of OL-relevant knowledge we have perfor-

mance in math and reading tests taken at 16 (approximately the same year of

OL exams). So in our case k = 7 and Y = (OL,M16, R16,M11, R11,M7, R7).

If a random variable U which satisfies (3) could be identified, intuitively U

would capture underlying unobserved cognitive ability, since knowledge of U

would imply for example that knowledge of any test result would be irrelevant

for predicting OL results and viceversa.

However, classical latent class models may be too restrictive in our specific

context, in particular the assumptions underlying equation (3). The first point

to notice is that it seems plausible that endowments and responses are them-

selves affected by family background characteristics. Thus, a first extension of

the classical model is to allow the distribution of the response vector (U,Y ) to

depend on observable covariates, which we recall are denoted by b = (x, z).8

Furthermore, it seems plausible that the three test results taken on the same

subject matter may still be dependent even after conditioning on U ; but (3)

implies that knowing underlying schooling ability would make achieved test

score results, say at 7 in math, useless for predicting test score results in math

at 11 or 16, and the same applies to the conditional joint distribution of the

reading tests. This imposes a fairly strong duty on U .9 We then weaken

8Huang and Bandeen-Roche [27] explain how a finite mixture model can be identified and
estimated in the presence of continuous and discrete covariates, under the local independence
assumption.
9A similar extension has been used, for example, by Stanghellini and van der Heijden [34].
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(3) by considering dependence on covariates and allowing some conditional

dependencies:10

Assumption 1.

Pr(y | b) =
∑

u
Pr(u | b) Pr(ol | u,x) Pr(r | u) Pr(m | u), (4)

where m = (m16,m11,m7) and r = (r16, r11, r7).

Assumption 1 makes it explicit the way in which family background influences

observed responses:

• Writing Pr(r|u) Pr(m|u) as independent of b implies that we are using

a kind of absolute performance in math and reading ability without

correcting for different backgrounds to identify U ; moreover, while in

the spirit of latent class analysis math and reading test scores are still

used independently, residual association is allowed within m and r.

• On the other hand we allow the marginal distribution of U to depend

on family background variables. The intended interpretation of this

individual heterogeneity is as “potential for schooling performance”.

• Since U depends also on parents endowments U f and Um which are not

observed, the estimates of the effect of b on U are likely to be biased.

However, the omission of U f and Um does not bias the effect of b on

OL given U (see Appendix section 6.1), which is the focus of the paper.

• We model the conditional distribution Pr(OL | U = u,x) to estimate

the effect of a change in parents’ schooling x on OL while controlling

for U .

As it can be seen from equation (4), the distribution of Y conditional on

U and b is decomposed into three conditionally independent blocks, namely

OL results and math and reading test scores. Our second assumption is that

math and reading test scores follow a first order Markov recursive system in

the spirit of Griliches [22] and Griliches and Mason [23]:

Assumption 2.

Pr(m | u) = Pr(m7 | u) Pr(m11 | m7, u) Pr(m16 | m11, u);

Pr(r | u) = Pr(r7 | u) Pr(r11 | r7, u) Pr(r16 | r11, u).

10A latent class model where both the responses and the latent variable are allowed to depend
on covariates, and residual association is allowed on responses, is described in Bartolucci
and Forcina [4] in the context of capture/recapture models.
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Let now p(b) ∈ ∆(m+1)·27 denote the probability vector which describes the

conditional distribution of (U,Y | b); and let

∆o(b) = {p(b) ∈ ∆(m+1)·27 | p(b) satisfies Assumptions (1)–(2)}

denote the set of p(b)’s which can be decomposed according to Assumptions

1 and 2. The dimension of this set is equal to m + (m + 1) · (7 + 2 + 2)

because there are m marginal weights for U and the conditional distribution

of Y | U = u has 11 (instead of 7) logits since m11,m16, r11, r16 require 2 logits

each because of the Markov property; we let v = m+ (m+ 1) · 11.

Finally, let λ(b) denote the v-dimensional vector that collects the following

logits and global logits:

λ(b) = [γ1
U |b . . . γ

m
U |b, λM7|0 . . . λM7|m, λR7|0 . . . λR7|m, λM11|M7,0 . . . λM11|M7,m,

λR11|R7,0 . . . λR11|R7,m, λM16|M11,0 . . . λM16|M11,m,

λR16|R11,0 . . . λR16|R11,m, λOL|0,x . . . λOL|m,x]′.

Using recent advances from the theory of marginal modeling, it can be shown

that any conditional distribution p(b) ∈ ∆o(b) can be conveniently parame-

terized in terms of λ(b) without imposing any parametric restrictions besides

those implied by the Assumptions (1)–(2):

Proposition 1. The mapping from p(b) to λ(b) is invertible and differentiable

for any p(b) ∈ ∆o(b) with strictly positive elements.

Proof. The result is a special case of Theorem 1 in Bartolucci–Colombi–Forcina

[3] who study the properties of a general class of marginal parameterizations

which constitute link functions, that is re-parameterizations which are one to

one and at least twice differentiable. �

The mapping from p(b) to λ(b) can be written in explicit form by construct-

ing an appropriate contrast matrix C (whose rows have elements summing to

zero) and a marginalization matrix M (a matrix made of 1’s and 0’s) such

that, for any p(b) ∈ ∆o(b), we have

λ(b) = C log(Mp(b)).

In particular, C is a block diagonal matrix with elements equal to (−1 1).

For each block of C the matrix M has two rows of length (m + 1) · 27 which

select the elements of p(b) that constitute the two events to be compared in
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the corresponding logit. A Matlab routine which constructs such matrices is

available from the authors.

Proposition 1 implies that the mapping from p(b) ∈ ∆o(b) to λ(b) defines

an invertible link function h : Rv 7→ ∆o(b) such that any p(b) ∈ ∆o(b) can

be written as p(b) = h
(
λ(b)

)
. Thus, for each b, λ(b) conveys all relevant

information on p(b). When the covariates are discrete with a very limited

number of distinct configurations (strata), we could define a finite number of

dummy variables for mutually exclusive and exhaustive configurations, and use

these in place of b. In practice this would be equivalent to fit a separate model

to each stratum and the model may be called saturated (see e.g. Wooldridge

[36] p.456 for terminology). Since in this case there would be no sharing of

parameters across strata, this is equivalent to imposing no restriction on how

λ(b) depends on b. The advantage is that there is no problem of mispecification

in the mapping from b to p(b); in other words, under Assumptions 1–2, the

saturated model is non parametric.

Typically however covariates may be continuous or take on so many values

that most strata contain only one subject, so that the approach just described

is not viable. We model λ(b) as a linear function of the covariates, hence we

estimate the following multivariate regression system:

Pr(OL = 1 | u,x) = Λ
(
aOL(u) + x

′
βOL

)
Pr(M16 = 1 |M11, u) = Λ

(
aM16(u) + bM16(u)M11

)
Pr(R16 = 1 | R11, u) = Λ

(
aR16(u) + bR16(u)R11

)
Pr(M11 = 1 |M7, u) = Λ

(
aM11(u) + bM11(u)M7

)
Pr(R11 = 1 | R7, u) = Λ

(
aR11(u) + bR11(u)R7

)
Pr(M7 = 1 | u) = Λ

(
aM7(u)

)
Pr(R7 = 1 | u) = Λ

(
aR7(u)

)
Pr(U ≥ u | b) = Λ

(
aU(u) + b

′
βU

)
,

(5)

where Λ(t) = et/(1 + et) denotes the logit link function. This can be written

more compactly as

λ(b) = Bψ (6)

where B is a design matrix whose dependence on b reflects the effect of the

covariates on the different elements of the joint distribution, and ψ is the

vector of model parameters.

The standard approach to parameters’ estimation in finite mixture models

is the EM algorithm whose implementation to our context is described in the
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Appendix. The basic idea of the EM algorithm is to consider that, if the joint

frequency table (U,Y ) were known, maximum likelihood estimation would be

equivalent to estimation of a regression model within the multinomial distribu-

tion. At the E (expectation) step the unobservable frequency table is replaced

by the expected value computed conditionally on the observed frequency table

and the (possibly updated) estimates of the model parameters. It has been

shown (Dempster–Laird–Rubin [18]) that the algorithm converges to the max-

imum of the true likelihood. Details on the identification and estimation of

the model parameters ψ are contained in the Appendix.

4. Results

4.1. Parameters’ estimation. We start by estimating model (6) under dif-

ferent numbers of latent classes. Maximum likelihood estimation is performed

by a EM algorithm as described in the Appendix; we have written a Matlab

program which implements it, available upon request. The maximized log-

likelihood L(ψ̂) and Schwartz’s Bayesian Information Criterion BIC(ψ̂) =

−2L(ψ̂) + log(n)v, where n denotes sample size and v is the number of pa-

rameters (which depends on the number of latent classes m+ 1), are given in

Table 2 below. Since BIC(ψ̂) is lower with three latent classes in both sam-

ples, these results seem to indicate that three latent classes are adequate to

represent unobserved heterogeneity. A comparison of the estimated coefficients

in the OL equation, which are of major interest for our purposes, reveals that

while with two latent classes the coefficients for parents’ schooling are sensibly

greater than those with three classes, there is practically no difference between

the estimated coefficients for parents’ schooling with three or four classes.11

Daughters Sons

latent cl. param. L(ψ̂) BIC(ψ̂) L(ψ̂) BIC(ψ̂)
2 30 -8014.99 16261.47 -8293.13 16818.58
3 42 -7875.06 16074.21 -8166.58 16658.41
4 54 -7845.17 16107.03 -8121.37 16660.92

Table 2. Maximized log-likelihood and BIC

Next, for parsimony and sharpness of parameters’ estimation, we impose

the restriction that the slopes bM11(u), bR11(u), bM7(u), bR7(u), which give the

11Estimated coefficients for two and four latent classes are not reported for the sake of
brevity.
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recursive structure to test results, do not depend on U . Since U takes three

levels, this imposes a total of 4 × 2 = 8 linear constraints. The restriction is

not rejected by a standard LR test (p-values are respectively equal to 0.6875

and 0.2764 in the males and females subsamples).

Table 3 below contains our estimates.12 We observe that:

• The coefficients of the parents’ education variables in the OL equation

imply the presence of the role effects as described in the introduction:

after controlling for the child’s schooling endowments, the father’s edu-

cation significantly helps his son’s chance of achieving OL certification,

and not his daughter’s; on the other hand, mothers’ education has no

statistically significant effects.

• There is a strong positive association between child’s endowment U and

family background characteristics. However, as we discuss in the Ap-

pendix, since we do not control for parents’ endowments, our estimate

of βU may be biased, and the causes for high U are left unexplored.

Nevertheless, the reasons why this bias should be significantly different

for the two parents are unclear.

• In general, the effect of having a high rather than low level of U is

rather substantial on all response variables; to appreciate its quantita-

tive impact, notice that, in the logit scale, a change of value say from

-2 to +2 implies a change in the probability of success from about 12%

to 88%, while a change from -1 to +1 implies a change from 27% to

73%.

• Even after conditioning on U , there is still a strong positive corre-

lation between test score results in the same subject taken at dif-

ferent ages, as it emerges from the significantly positive estimates of

bM11, bR11, bM7, bR7.

Finally, for the sake of comparison, we have estimated the previous model

on the pooled sample of sons and daughters. As can be seen by comparing

the corresponding lines of Tables 3 and 4 below, the pooled sample estimates

are approximately equal to the average of the corresponding estimates for

daughters and sons, suggesting a somewhat stronger role of fathers. We have

shown that considering sons and daughters subsamples separately is crucial

for clarifying the nature of this asymmetry.

12To ease interpretation of the intercepts, all covariates have been centered.
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Daughters Sons

coeff se coeff se
βOL

fs -0.0119 0.0519 0.1461 0.0526
ms 0.0771 0.0597 0.0305 0.0595

βU

fs 0.2635 0.0410 0.2995 0.0415
ms 0.2241 0.0454 0.2652 0.0462
fi 1.0677 0.1496 1.2677 0.1539
mi 0.4859 0.1601 0.028 0.1578
ty 0.0435 0.0083 0.028 0.0085

Other parameters

aOL(U = 0) -2.5911 0.2323 -2.5651 0.2273
aOL(U = 1) 0.3507 0.1094 -0.2091 0.1113
aOL(U = 2) 2.4298 0.1920 2.1521 0.1860

aM16(U = 0) -2.9577 0.2298 -2.3952 0.2121
aM16(U = 1) -0.7126 0.1464 0.1247 0.1505
aM16(U = 2) 3.1312 0.5464 4.9600 1.4623
bM11 0.5764 0.1911 0.4196 0.1851

aR16(U = 0) -2.9529 0.2310 -2.2093 0.1608
aR16(U = 1) -0.5772 0.1372 -0.5355 0.1346
aR16(U = 2) 1.7708 0.3043 1.8477 0.3594
bR11 1.4707 0.1605 1.9963 0.1605

aM11(U = 0) -3.2631 0.3123 -3.3529 0.3536
aM11(U = 1) -0.0242 0.1323 -0.2521 0.1421
aM11(U = 2) 3.4093 0.4224 3.2757 0.4574
bM7 0.3324 0.1579 0.6199 0.1528

aR11(U = 0) -3.0733 0.2504 -2.9243 0.2784
aR11(U = 1) -0.2783 0.1485 -0.1541 0.1350
aR11(U = 2) 1.8328 0.2227 2.0751 0.2319
bR7 0.6454 0.1499 0.5282 0.1484

aM7(U = 0) -1.8338 0.1313 -1.4935 0.1200
aM7(U = 1) -0.3027 0.0961 -0.0856 0.0973
aM7(U = 2) 0.9859 0.0941 1.2074 0.0987

aR7(U = 0) -1.5506 0.1267 -2.2298 0.1760
aR7(U = 1) 0.6251 0.1052 -0.1301 0.1067
aR7(U = 2) 2.0281 0.1340 1.7173 0.1263

aU(U = 1) 1.0530 0.0816 1.0468 0.0941
aU(U = 2) -0.7378 0.0907 -0.7335 0.0887

Table 3. Parameters’ estimates
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coeff se

fs 0.0704 0.0368
ms 0.0589 0.0417

Table 4. βOL estimates in the pooled sample of sons and daughters.

4.2. Direct effects. We now translate the above estimates into a quantitative

appraisal of the role effect. We consider the effect on OL attainment of in-

creasing a parent education by three full years of schooling, leaving unchanged

the schooling of the other parent, starting from a situation where both parents

have an average level of schooling.

The average effect of increasing a parent’s education for a given level of

child’s endowment U can be calculated as:

δ(u)Si = Pr(OL = 1 | Sj = µj, Si = µi + 3, U = u)−

Pr(OL = 1 | Sj = µj, Si = µi, U = u)

= Λ(aOL(u) + 3βOL,Si)− Λ(aOL(u)), i, j = f,m, u = 0, 1, 2,

where the second equation follows since we have centered father’s and mother’s

schooling. These effects can be consistently estimated using the coefficients in

the OL-equation; furthermore, using the estimated variance matrix of (aOL(u), βOL,Si),

an asymptotic standard error can be derived by application of the delta method.

Their numerical values are in the following table:

Daughters Sons

δ(u)Sf se δ(u)Sf se
U=0 -0.0023 0.0098 0.0351 0.0169
U=1 -0.0087 0.0380 0.1091 0.0392
U=2 -0.0027 0.0137 0.0344 0.0122

δ(u)Sm se δ(u)Sm se
U=0 0.0166 0.0148 0.0063 0.0129
U=1 0.0547 0.0413 0.0227 0.0442
U=2 0.0156 0.0116 0.0082 0.0156

Table 5. Direct Effects of Father’s and Mothers’ Schooling

The table shows that the direct effect, measured as difference in probabilities

of achievement, is rather substantial and statistically significant only for fathers

on sons. Also interesting to notice is the fact that direct effects are highly

nonlinear in U .
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4.3. A quasi-saturated model. Since some of the covariates in b are either

discrete and take on many values or are actually continuous, fitting a satu-

rated model would be impossible; to check the robustness of our results we

now present a model which may be seen as a feasible approximation of the sat-

urated model. We dichotomize parents’ schooling into two dummy variables

fsh and msh, which take value 1 if the parent has left school after 16 years

of age; family income is also dichotomized into a dummy variable tyh which

takes value 1 when family income is above the sample median. The set of co-

variates can then be arranged into a 25 = 32 different covariate configurations

so that a saturated model could, in principle, be fitted. These 32 dummy vari-

ables can be arranged into a null effect, 5 main effects (fsh,msh, fi ,mi, tyh),

10 second-order interactions, 10 third-order interactions, 5 fourth-order inter-

actions and 1 fifth order interaction. Because in both samples there was very

high collinearity between interactions of order higher than the second, we fitted

a quasi-saturated model by ignoring all interactions beyond the second.

We thus re-estimate model (5) where b in the U -equation contains 15 dummy

variables, while x in the OL-equation contains the three dummies (fsh,msh, fsh·
msh). We again use the EM algorithm to estimate this model, using the same

parameters’ complexity as the model just estimated. The value of the max-

imized log-likelihood for the females and males samples is equal to -7892.05

and -8190.56 respectively; thus even though there is a higher number of slope

parameters, the quasi-saturated model has a worse fit than the previous model,

the reason being that whatever is gained by the increased number of parame-

ters is counterbalanced by the loss of information due to the dichotomization

of covariates. The estimated coefficients for the effects of parents’ schooling

on OL are reported in the table below:13

Daughters Sons

coeff se coeff se
fs -0.1450 0.2719 0.5600 0.2869
ms -0.0678 0.3001 0.0908 0.2857
fs · ms 0.5591 0.5016 0.8691 0.5872

Table 6. βOL estimates in the quasi-saturated model

A comparison of these estimated coefficients with those of Table 3 above

reveals that the main message of the model discussed in the previous section

13The other estimated parameters are similar to the previous model and are not reported
for the sake of brevity.
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is quite robust. Conditionally on unobservable child’s endowment, father’s

schooling has still a positive effect on the probability that the child’s attains the

O-Level certification; while all other coefficients are not statistically significant,

it may be interesting to notice some positive (but insignificant) effect in the

interaction term.

5. Concluding Remarks

Recent papers 14 have analyzed the causal effect of parents’ education on

children’s controlling for parents’ unobserved endowment, by use of twin par-

ents, adoptees or compulsory schooling law instruments. By applying recently

developed finite mixture models to the UK NCDS dataset, we control for the

child’s own schooling endowments, by exploiting information on early cognitive

tests.

By conditioning on child’s ability rather than on parents’ we measure the

direct effect of parents’ schooling on children’s education. The effect of parents’

schooling on children’s education attainment given the latter’s ability reflects

parental pressure, and can thus be interpreted as a ‘role’ effect. To allow for

the possibility of its dependence on gender we consider sons and daughters

subsamples separately. We find that only fathers’ education matters, but that

its impact is entirely confined to the education of their sons.

This result may well reflect the social structure of Western families in the

seventies (the data domain), and if the women’s role has changed a different

picture may emerge from more recent data. But the message we get from

our findings remains that children can respond strongly to family pressure

on schooling attainment. From a policy – or rather ‘cultural’– viewpoint this

suggests that when parents’ pressure is weak only the social environment,

school primarily, can make up for this loss by helping the young to appreciate

the value of education.

6. Appendix

6.1. Marginal causal effect. Consider the marginal causal effect of an or-

dered discrete variable X on a binary variable Y

∆x ≡ Pr(Y = 1|X = x+ 1)− Pr(Y = 1|X = x),

14See for example [1], [7], [8], [10], [11], [15], [17], [29], [31], [32], [33].
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where we have omitted other covariates for simplicity. In terms of the present

paper, Y represents scholastic attainment and X parent’s years of schooling.

Assume also the existence of two discrete variables U and V , which are meant

to capture respectively child’s and parent’s unobservable endowments.

∆x above may be expanded by considering that Pr(Y |X) =
∑

u Pr(Y, U =

u|X); letting Px,u = Pr(Y = 1|X = x, U = u) and Qu|x = Pr(U = u|X = x),

one obtains ∆x =
∑

u(Px+1,uQu|x+1 − Px,uQu|x). By adding and subtracting∑
u Px,uQu|x+1 to this expression, rearranging terms and noting that if U has

m+ 1 levels we may write Q0|x = 1−
∑m

1 Qu|x, one gets

∆x =
∑m

u=0
(Px+1,u − Px,u)Qu|x+1 +

∑m

u=1
(Px,u − Px,0)(Qu|x+1 −Qu|x).

The first component is a weighted average of the direct effect of X on Y . The

second term is the sum of the products of the effect of X on U times the effect

of U on Y , which may be interpreted as a measure of the indirect effect of X

on Y carried to Y through U . Though the above decomposition is not unique

since, for instance, in the first component Qu|x could be used as weights with

a minor change in the second component, it may be considered as a discrete

analogue of the decomposition β = b+ ce in the linear system (1)–(2).

If subjects could be classified according to their value of U , the direct causal

effect of X on Y could alternatively be evaluated at the various values of U as

Px+1,u − Px,u which we denote by

δx(u) ≡ Pr(Y = 1|X = x+ 1, U = u)− Pr(Y = 1|X = x, U = u);

if U had only few levels, inspection of the individual values of δx(u) would

be more instructive than looking at their average. This can be compared to

the simple linear model E(Y | X,U) = a + bX + cU , where clearly the single

coefficient b captures the direct effect.

Now consider the additional unobservable variable V , and assume it is ig-

norable:

Pr(Y = 1 | X = x, U = u, V = v) = Pr(Y = 1 | X = x, U = u),

so that Y is independent of V given U,X. Then a similar argument to the

one used above may be applied to expand the effect of X on U in the second

component. To do so it is convenient to write Qu|xv = Pr(U = u | X = x, V =
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v) and Rv,x = Pr(V = v | X = x); assuming that V has h+1 levels one obtains

∆x =
∑m

u=0
(Px+1,u − Px,u)Qu|x+1

+
∑m

u=1
(Px,u − Px,0)

∑h

v=0
(Qu|x+1,v −Qu|x,v)Rv|x+1

+
∑m

u=1
(Px,u − Px,0)

∑h

v=1
(Qu|x,v −Qu|x,0)(Rv|x+1 −Rv|x),

which makes it clear that, if X,V are independent, the third component is 0

so that the marginal effect can be decomposed into a direct and indirect effect

of X on Y . If instead there is correlation within both X,V and U, V , then

the third component is nonzero, and thus knowledge of U is not sufficient for

decomposing the marginal effect into a direct and indirect effect.

Summing up, if U is known but V is not, under ignorability of V one can

estimate the direct causal effect of X on Y given U , but one cannot obtain an

unbiased estimate of the marginal causal effect ofX on Y and its decomposition

into a direct and indirect component, since the term Px+1,u − Px,u requires

controlling for U , while the other terms in ∆x require control of V .

6.2. Identification, estimation and computation of model (6).

6.2.1. Likelihood inference. The true log-likelihood. Let n(i) be the 27 vec-

tor containing the frequency table of the response variables Y in lexicographic

order for the subjects with covariate bi; if there is a single subject with such

features, n(i) is a vector of 0s except for a 1 in the cell corresponding to the

response pattern y(i). Let also q(i) denote the probability distribution for

subjects with covariate bi. The log-likelihood may be written as

L =
∑

Li =
∑

n(i)
′
log[q(i)].

The latent log-likelihood. Let L = (1m+1
′⊗I27) denote the matrix which

marginalizes with respect to the latent variable U , p(i) the vector containing

the joint probability distribution of (U,Y ) for subjects with covariate bi and

m(i) the vector containing the unobservable frequency table of (U,Y ) for

subjects with covariate bi. Clearly n(i) = Lm(i) and q(i) = Lp(i).

If the latent class U could be observed, the corresponding log-likelihood

would have the form

Λ =
∑

Λi =
∑

m(i)
′
log[p(i)].
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Maximizing this log-likelihood is as a problem of incomplete data which may

be tackled by the EM algorithm (Dempster–Laird–Rubin [18]).

The E step. Because the multinomial is a member of the exponential family,

the conditional expectation involved in the E step is equivalent to comput-

ing the so called posterior probability of latent class U given the observed

configuration y

Pr(U | y, zi) =
p(i, U,y)

q(i,y)

so that m(i, u,y) = n(i,y) Pr(u | y, bi) follows from a simple expectation of a

multinomial distribution for U .

The M step. Implementation of the method of scoring for the maximization

of Λ with respect to the model parameters ψ requires computation of the score

vector (first derivative with respect to ψ) and of the expected information

matrix (minus the expected value of the second derivative). Since Λ is a

multinomial log-likelihood, exponential family results can be exploited to make

such calculations straightforward. In practice, after rewriting Λ in terms of

the canonical parameters of the multinomial distribution, say θ(i), there are

invertible and differentiable mappings from θ(i) to the vector of probabilities

p(i) and from p(i) to λ(i) (the latter mapping is described after Proposition

1), while λ(i) is linked to ψ by the linear regression model. The interested

reader may see Dardanoni and Forcina [16] or Bartolucci–Colombi–Forcina [3]

for details.

6.2.2. Computational issues. The EM algorithm is a very robust method of

estimation of the model parameters for latent class models. However, it suffers

from at least two drawbacks: it can be very slow with large data sets, and, by

itself, does not provide a consistent estimate of the variance-covariance matrix

of the model parameters. This is so because the expected information matrix of

the latent likelihood is based on the assumption that the vectorm(i) is known,

using its inverse as an estimate of the variance matrix implies that standard er-

rors will in general be underestimated. The correct information matrix may be

computed by differentiating the incomplete data likelihood as follows. Write Li

= n(i)
′
G̃γi−ni log[1

′
exp(G̃γi)] where γi, the canonical parameter of the ob-

served multinomial, may be written as H̃ log[L exp(Gθi)/1
′
exp(Gθi)], where

H̃ is a t× (t− 1) contrast matrix used to define the canonical parameters and

G̃ is its right inverse while G is the design matrix which defines the canonical
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parameters θ for the latent distribution p(i) which has v columns of full rank.

By differentiating Li by the chain rule with respect to ψ one may write∑ ∂Li

∂ψ
= Bi

′
Ri

′
G

′
ΩiL

′
diag(qi)

−1H̃
′
G̃

′
(n(i)− niqi)

where ni = 1
′
n(i), Ωi = diag[p(i)− p(i)p(i)

′
] and Ri is the derivative of the

canonical parameter θi with respect to λi
′
. Because E(n(i)−niqi) = 0, minus

the expected value of the second derivative may be written as

F i = Bi
′
Ri

′
G

′
ΩiL

′
diag(qi)

−1H̃
′
G̃

′
LΩiRiBi

(where H̃
′
G̃

′
is simply equal to I t − 1t1t

′
/t with t = 27), so the information

matrix is simply
∑

i F i.

6.3. Model identifiability. A statistical model depending on a vector of pa-

rameters ψ ∈ Ψ is identifiable if there is no subset of Ψ where the likelihood

is constant. When, as in our case, the likelihood is differentiable, the model

is identifiable if there is no ψ0 ∈ Ψ such that the matrix of second deriva-

tives (or equivalently the observed information matrix) computed at ψ0 is not

of full rank. To analyze the identifiability of our model, consider first the

parametrization in terms of the vector γ obtained by stacking the vectors γi

of canonical parameters of the saturated log-linear model for each subject in

the manifest distribution. Since this saturated log-linear model is identifiable,

the problem consists in checking that lack of identifiability is not introduced

by the different parametric transformations:

(1) from γ to θ, the vector obtained by stacking the vectors of canonical

parameters of the latent class model for each subject,

(2) from θ to λ, the vector obtained by stacking the vectors of marginal

parameters for each subject,

(3) the regression model λ = Bψ.

The identifiability of the regression model is easily established by checking

that B is of full column rank. Results from Bartolucci, Colombi and Forcina

(2006) ensure that the transformation to the marginal parameters is invertible

and differentiable. So, the crucial transformation is the first one and, because

the transformation is at the subject’s level, to prove identifiability it is sufficient

to show that the following matrix of first derivatives is of full column rank

T i =
∂γi

∂θi
′ = H̃diag(qi)

−1LΩG.
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In most cases, T i will be a rectangular matrix of full column rank, which

implies that γi is constrained within a non linear subspace determined by the

specific latent class model. Unfortunately there is no general result in the latent

class literature to establish whether a latent class model is identifiable, though

identifiability of most models of interest under local independence is known.

When, like for the model used in this paper, results are not available, the

matrix T i above may be easily computed for a randomly chosen set of values

of θi and the full rank condition checked. This is what we have done for our

model by sampling a reasonable number of θi’s from a standard normal. As we

could not find a single instance where the rank was any close to being deficient,

we have good practical evidence to believe that the model is indeed identifiable

even for a single subject. However, notice that even when the matrix T i is not

of full column rank, the model may become identifiable due to the regression

component. The reason for this is that the regression model implies that most

parameters are shared in the probability distribution of different subjects, so

that information may be collected from different subjects.
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