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SECONDARY EFFECTS IN EDUCATION
TRANSMISSION: A FINITE MIXTURE MODEL

VALENTINO DARDANONI, ANTONIO FORCINA, SALVATORE MODICA ?

Abstract. Education is transmitted from parent to child ‘pri-

marily’ through its effect on the child’s endowment; but there is

also an additional, ‘secondary’ effect given the child’s endowment,

which presumably operates through the social environment. Using

data from the NCDS, we find that this secondary channel is gender

dependent: fathers exert significant influence only on their sons,

and mothers have a weaker influence, only on daughters.

These results are obtained in a finite-mixture model where edu-

cational achievements and auxiliary discrete multivariate responses

are used to identify the underlying endowment. Generalizing ex-

isting models which assume independence of responses conditional

on endowments, within our framework the effect of covariates and

the temporal dependence among responses can be modelled in a

flexible way.

JEL Classification Numbers: I21, C35

Keywords: Education Transmission, Finite Mixtures.

1. introduction

It is by now well appreciated that finding a positive association be-

tween parents’ and children’s education may simply reflect correlation

between underlying unobserved heritable endowments: better endowed
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EDUCATION TRANSMISSION: A FINITE MIXTURE MODEL 2

parents are more educated and have better endowed, hence more ed-

ucated, children. Following the seminal contribution of Becker and

Tomas on intergenerational income transmission, as adapted by Solon

to the educational context (see also [21]), estimation of the causal effect

of parents schooling on the educational achievements of their children

is typically based on the simple linear reduced form equation

Sc = α + βSp + γRp + δUp + ε (1)

where Sc and Sp denote child’s and parent’s schooling, Rp and Up

parent’s child-rearing ability and unobservable endowments.

Estimation of β in equation (1) by controlling for Up has been the

object of recent research, starting from Behrman and Rosenzweig [4]

who use differences on MZ twin parents and find that only father’s

education as an effect on childrens’. In two important follow-ups, Plug

[27], by using adoptees, mostly confirms Behrman and Rosenzweig’s

findings, while Black–Devereux–Salvanes [6], by using reforms in mu-

nicipal compulsory schooling laws as instruments, find almost no causal

link between parents’ and children’s education.1

Sociologists (see e.g. Erikson et al. [15] and Jackson et al. [23])

have been actively investigating the effect of family background on chil-

dren’s schooling by following an early important distinction made by

Boudon [8] between “primary” and “secondary” causal effects, where

primary effects concern the influence of family background on children’s

scholastic attainment exterted through changes induced on children’s

1On Behrman–Rosenzweig [4] see also the critical Comment [1] by Antonovics and
Goldberger (and the authors’ Reply [5]). The difficulties in estimating β are illus-
trated in the survey by Holmlund–Lindahl–Plug [21], where these three different
methods (namely use of twins, adoptees and schooling laws instruments) are ap-
plied to a single data set, and it is shown that the three approaches produce results
which are in conflict with each other.
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academic ability, while secondary effects are those that relate fam-

ily background to actual scholastic attainment given academic ability.

This distinction is similar to the one between “indirect” and “direct”

effects which is currently used in the causal inference literature (see for

instance [26], [28], [30]).

In this simple linear setting, this distinction may be clarified by

examining the following equations which jointly imply (1) above:

U c = d+ eSp + fRp + gUp + η (2)

Sc = a+ bSp + cU c + ψ (3)

where U c denotes child’s unobservable endowment, equation (2) studies

how parental background helps children to develop a given endowment,

and equation (3) studies how parent’s schooling helps actual scholastic

attainment given that level of endowment. The primary effect of par-

ent’s schooling is thus measured by c · e while the secondary effect is

measured by b; the causal effect β corresponds to b+ c · e.2 If one aims

to estimate β, the analysis can be based on equation (1) which requires

some suitable device (say twins, adoptees, or instruments) that controls

for the parents’ unobservable endowment. Estimation of the secondary

effect, the b parameter above, constitutes instead a less ambitious task

since it requires to control for the child’s endowment for which more

reliable information may be available.

The present paper is an attempt to estimate the secondary effect of

parents’ education on children’s educational achievement by exploiting

recent advances in finite mixture models. The interpretation of a pos-

sible secondary effect emerges by asking why, among subjects with a

2In Appendix A we show that a similar decomposition also holds in the non-linear
setting of the present work.
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given level of schooling endowment, those with more educated parents

should attain higher educational levels. Possible explanations include,

for example, the intergenerational transmission of education-dependent

labor market skills, better information on the value of education, in-

stillation of more ambitious schooling preferences, or simply greater

parental pressure reflecting social norms. Note that in any given social

context, this kind of influence (which may be called a role effect) is

likely to be gender dependent, in the sense that mothers and fathers

may have different effects on daughters and sons.

Our methodology is applied to the English NCDS dataset which is

discussed in detail in section 2. As main dependent variable we con-

sider, rather than years of schooling, a binary indicator of schooling

attainment of a significant educational certification, since this is more

likely to reflect the value assigned to formal education by the stu-

dents and their parents. The unobservable endowment is interpreted

as schooling potential at the time of the exams (in our case 16 years

of age).3 We identify this latent variable with a finite mixture model

which exploits the fact that the dataset contains information on a rich

set of variables concerning different kinds of abilities measured from

early age. Notice that, as argued above, we are not seeking identifica-

tion of parents’ unobsevable endowments. Omission of parents’ endow-

ment in (2) clearly makes any estimate of the primary effect biased, but

estimation of the secondary effect is unaffected by this mispecification.

The paper has both methodological and empirical content. From

the methodological point of view, the paper lays down the theoretical

3In particular, the analysis of evolution of endowments from early age is outside
the scope of the paper. This important line of research is actively pursued by
Heckman and associates, cfr. e.g. [11, 12, 19], who also arrive at evaluating dynamic
complementarities of early and late interventions in the formation of skills.
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framework for handling a complex mixture model with discrete multi-

variate responses where schooling attainment and the results of cogni-

tive and non cognitive measurements are modelled jointly as dependent

both on covariates and on a discrete unobserved endowment which may

itself depend on covariates. Generalizing standard finite mixture mod-

els with multivariate discrete responses which assume independence of

responses conditional on endowments we allow, more realistically, some

dependence between early and late ability indicators.

The empirical findings confirm the presence of role effects in our

sample: given the child’s schooling ability, more educated parents bring

their offsprings to a greater level of education. This influence, however,

does not emerge if sons and daughters are pooled in the same sample.

Indeed it is crucial to examine sons’ and daughters’ subsamples sep-

arately to uncover the effect we estimate, which then appears neatly:

fathers’ education affects only that of their sons; mothers’ education

has a weaker effect, and only on daughters. Of course, this gender-

dependent link may well be confined to the social context to which our

data refers.

The sequel is organized as follows. The data are described in sec-

tion 2; we then derive the model to be estimated in section 3, which

also contains a discussion of related literature. Results of estimation

are reported in section 4. Section 5 contains some concluding remarks.

In Appendices we elaborate on the decomposition of primary and sec-

ondary effects, provide details of the identification and estimation of

our model, and collect auxiliary Tables.
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2. The Data Structure

In the British educational system students at the age of 16 take the

so called O-Level exams on a set of chosen topics. If a student has

reached a minimum standard in terms of quantity of subjects taken

and grades obtained, she is allowed, if she wishes, to access the next

level of education (the so-called A-Level).

We use data from the National Child Development Survey (NCDS).4

This data set is a UK cohort study targeting all the population born

in the UK between the 3rd to the 9th of March 1958. Individuals were

surveyed at different stages of their life and information on their school-

ing results and their background was collected. Our main dependent

variable is the binary variable OL which takes value 1 iff the subject

has passed at least five O-Level exams, which is the number of exams

typically required for continuing the scholastic career. In our sample

OL is equal to one for about fifty percent of the subjects. In the NCDS

subjects are tested at the age of 7, 11 and 16 for mathematics, reading

and general cognitive skills, and at the age of 7 and 11 information on

non-cognitive skills is also collected; we use the results of these tests

for identification of the unobservable endowment U c. In particular, we

first replace, at each age, the original maths and reading scores with the

principal component (in all cases this explains no less than 90% of the

total variance), thus creating three test score variables (7,11 and 16)

for each math and reading. For non-cognitive skills (available at ages 7

and 11) analogous factor analysis yields two factors, such that the first

factor may be interpreted as ability to relate to other individuals, while

the second captures emotional problems. From these measurements of

4The same data set is extensively used, among others, by Blundell–Dearden–Sianesi
[7], who study the effect of education on earnings.
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cognitive and non cognitive skills we extract six variables by summing

test scores at 7 and 11; we call them EM ,LM ,ER,LR,NP ,NS , which

are meant to capture early (7 and 11) and late (16) math and read-

ing endowments, and (early) personal and social noncognitive skills.

Since our finite mixture nodel requires use of discrete responses, we ac-

tually use discretized versions of the above variables which take value

k ∈ {1, . . . , K} iff the subject is in the kth quantile of the corresponding

continuous variable. In our application we use K = 4.

Since test scores take a large number of distinct values, one could

alternatively have modelled them as continuous variables. Within finite

mixture models, when a response variable is treated as continuous, a

parametric form of the density conditional on covariates and the latent

has typically to be specified; for instance one could assume a normal

distribution where the mean (and perhaps the variance) depends on

the latent and covariates. Thus, the price for using the true observed

values of the test scores is that a specific conditional density is typically

imposed. On the other hand, when the distribution is discretized, while

some information is lost, the resulting density is multinomial and does

not require any parametric restriction. When the number of discrete

categories is not too small, this loss of information may have less serious

drawbacks than imposing a parametric density.

Parents’ schooling is defined as the age at which they left school; 5 fa-

thers’ and mothers’ schooling are collected into the vector s = (Sf , Sm).

Regarding other family background variables, the NCDS contains also

information on parents’ interest in their child’s education, as reported

by teachers separately for mothers and fathers; these can be considered

5Unfortunately NCDS does not have data on parents’ scolastic attainment.
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a proxies for the true child-rearing abilities. Data on parents’ interest

are originally classified into 5 distinct categories (overconcerned, very

interested, shows some interest, little interest, can’t say); we have cre-

ated two parent’s interest binary variables Rf and Rm which take value

one if the parent is above the median after summing the original re-

sponses at the ages considered (7, 11 and 16). The two parents’ interest

variables are collected in the vector r = (Rf , Rm).

In the Becker-Tomes-Solon approach described by the reduced form

equation (1) it has been argued that family income may possibly affect

children’s schooling attainments if families are credit constrained. A

thorough and perspective review of the role of income in this model

is contained in the survey [21] by Holmlund, Lindahl and Plug. Since

the NCSD contains information on family incomes, we have created a

family income variable for possible inclusion in the model discussed in

the next section. However, using the income variable caused a drop

of more than 50% of the sample size, and in all the configurations we

estimated was never found significant. We thus decided not to use in-

come as a covariate; the vector of all family background characteristics

is then denoted by x = (s, r).

From the NCDS we selected all subjects for whom we had informa-

tion on OL, test scores and x; the resulting sample is made of 5195

individuals, 2627 sons and 2568 daughters. A complete description of

the data is available at

http://www.esds.ac.uk/longitudinal/access/ncds.
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3. Model formulation

3.1. The Equation System. We wish to estimate the secondary ef-

fect of parents’ schooling s = (Sf , Sm) on child’s educational achieve-

ment OL given the child’s unobservable endowment U c by a finite

mixture model. These models, essentially, decompose the probability

distribution of an observed response vector y conditional on observed

covariates x into a mixture of conditional probabilities involving an

unobservable discrete random variable v, subject to a suitable set of

parametric restrictions which make the mixture identifiable. Formally

one could write

P (y | x) =
∑

v
P (v | x)P (y | v,x);

in our context the response vector y includes the binary OL variable

together with the set of cognitive and non cognitive test scores, so

y = (OL,EM,LM,ER,LR,NP,NS) ≡ (OL,y−ol). The covariates

are x = (s, r); and v = (U c, Up), which can be thought as a pair of

discrete random variables which index distinct types of unobservable

endowments for child and parents.

A crucial assumption of this paper is that parents’ endowment Up,

while affecting child’s endowment U c, is irrelevant for predicting the

response vector y once U c is accounted for. Under this ignorability

assumption, formally

P (y | uc, up,x) = P (y | uc,x) , (4)
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marginalizing with respect to Up in the above expression for P (y | x)

and using (4) leads to

P (y | x) =
∑

uc,up
P (uc, up | x)P (y | uc, up,x) =

∑
uc
P (uc | x)P (y | uc,x).

(5)

Equation (5) implies that ignoring Up affects the first component

and thus prevents unbiased estimation of the effect of x on U c (and

of the primary effect), but does not affect the second component; in

particular the effect of x on OL, which is the focus of this paper, can

be estimated consistently.

We want U c to identify absolute rather than residual (after adjusting

for family background) latent abilities, for otherwise the secondary ef-

fect would be inflated. Thus we prevent test score responses to depend

on x conditionally on U c:

P (y−OL | U c,x) = P (y−OL | U c) ,

which should be seen as an assumption on the nature of the unobserv-

able endowment jointly identified be the set of responses.

Notice that identifiability of mixture models with multivariate re-

sponse variables is usually achieved by the restrictive assumption of in-

dependence of the responses conditionally on the latent (see Goodman

[17] for the seminal paper on finite mixture model with multivariate

binary responses, and Huang and Bandeen-Roche [22] for a recent gen-

eral treatment under conditional independence). In this paper we allow

dependence of late maths and reading scores on early ones and provide

evidence that the model is still identifiable. This enhances flexibility

of the model, since it seems realistic to assume that even conditioning
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on ability, early results help predicting later ones; our data strongly

confirm this presumption.

Finally, to model the conditional probabilities of interest one has to

choose an appropriate set of link functions for each response variable

and the latent. A logit link is a natural candidate for the binary OL.

All the remaining responses are ordinal and thus a natural choice is

to use a set of global logits. The latent U c instead is assumed to be

purely qualitative with each category indexing a specific unobserved

type; thus we use the so called adjacent logits, which provide the sim-

plest link function for unstructured qualitative variables. Recall that

for a variable X taking values in 1, . . . , k, global logits are defined

as log
(

Pr(X ≥ x)/Pr(X < x)
)
, and adjacent logits are defined as

log
(

Pr(X = x)/Pr(X = x− 1)
)

for x = 2, . . . , k.

In conclusion we estimate the following system, where for simplicity

we write U instead of U c, a discrete random variable taking values

1, 2, . . . ,m:

P (OL = 1 | U = u,S = s) = F
(
αOL

u + βOL
f sf + βOL

m sm
)
, (6)

P (U = u |X = x) = G
(
αU

u +βU
u,fs

f+βU
u,ms

m+γU
u,fr

f+γU
u,mr

m), u = 2, . . . ,m,

(7)

and, for j = 2, 3, 4, em, er = 1, . . . , 4 and u = 1, . . . ,m

P (EM ≥ j | U = u) = H
(
δEM
j + αEM

u

)
P (LM ≥ j | U = u,EM = em) = H

(
δLM
j + αLM

u + ρLM
em

)
P (ER ≥ j | U = u) = H

(
δER
j + αER

u

)
P (LR ≥ j | U = u,ER = er) = H

(
δLR
j + αLR

u + ρLR
er

)
P (NP ≥ j | U = u) = H

(
δNP
j + αNP

u

)
P (NS ≥ j | U = u) = H

(
δNS
j + αNS

u

)
,

(8)
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where F,G and H are respectively the binary, adjacent and global logit

link functions. In total there are [(m−1)+7×m]α’s, [2+2×(m−1)]β’s,

(6× 3) δ’s, 2× (m− 1) γ’s and 2× 4 ρ′s. Notice however that, for each

test score ρ1 and δ2 must be constrained to 0 to avoid a dummy variable

trap and have each equation identified. Notice that child-rearing ability

does not enter equation (6), in accordance with equation (3) in the

introduction.

Summing up, our equation system is made, beside the OL equation

of main interest, by an equation which specifies the conditional dis-

tribution of the unobservable heterogeneity, and a system of auxiliary

equations which are instrumental for identifying it.

3.2. Estimation. The system of equations (6–8) can be written more

compactly as

λ = B(x)ψ (9)

where

• λ is the vector which collects the m logits of OL, the m − 1

logits of U , the 3 × m logits of each of the early math, early

reading and non cognitive test scores, and the 3× 4×m logits

for each of the late math and late reading test scores

• B(x) is a design matrix whose dependence on x reflects the

effect of the covariates on the different elements of the joint

distribution

• ψ is the vector which collects the model parameters α’s, β’s,

γ’s, δ’s and ρ’s.

The standard approach for maximum likelihood estimation of finite

mixture models is the EM algorithm. Because it is natural to assume
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that the discrete responses of our model follow the multinomial dis-

tribution, the E-step is equivalent to compute, for each subject, the

posterior probability of belonging to each latent class. The M-step

requires maximization of a multinomial likelihood with individual co-

variates. Details on the implementation are described in the appendix.

It has been shown (Dempster–Laird–Rubin [14]) that the algorithm

converges to the maximum of the true likelihood. It is well known that

the EM algorithm may converge even if the model is not identified, a

crucial issue for finite mixture models. Since unfortunately there is no

general result applicable to our context, we have used the numerical

test described by Forcina [16]. This test implements the condition of

parametric identification of Rothemberg [29], and consists in checking

that the Jacobian of the transformation between the parameters of the

saturated model for the observable responses and the mixture model

parameters is of full rank for a wide range of parameter values.

3.3. Discussion. The finite-mixture approach is used in many branches

of statistics such as biometrics and psychometrics and the resulting

models are usually called latent class models (see e.g. [25, 31]). It is

also becoming increasingly popular in econometrics (see e.g. Greene,

([18], Ch. 16) or Cameron and Trivedi, ([9], Ch. 18) for an introduc-

tion, and Heckman and Singer [20] for a seminal use in economics).

The assumption that U is discrete implies that no structure is im-

posed on child’s unobservable endowments; in other words, each cate-

gory corresponds to a distinct qualitative type. Thus unobservable en-

dowments are allowed to be multidimensional, a feature often stressed,

for instance, in the labor market literature (see e.g. [19]).
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Unlike in the analyses of Heckman and collaborators [11, 12, 19], we

do not attempt to model the dynamics of the unobservable individ-

ual heterogeneity U . This is so because our interest lies in capturing

the unobservable schooling endowments at the time when OL exams

are taken. U can be seen as a cross-classification of underlying abili-

ties which accounts for different cognitive and non cognitive skills and

for different evolutions over time. What matters here is that a suffi-

cient number of types is used to capture the unobservable heterogeneity

within a model which is identifiable.

4. Results

We start by estimating model (9) separately for sons and daughters

under a different number of unobservable types. To ease interpretation

of the estimated coefficients we first centered all covariates. Maximum

likelihood estimation is performed by an EM algorithm as described

in the appendix; computations are based on a set of Matlab func-

tions available from the authors. The maximized log-likelihood L(ψ̂),

Aikike Information Criterion AIC(ψ̂) = −2L(ψ̂) + 2v, and Schwartz’s

Bayesian Information Criterion BIC(ψ̂) = −2L(ψ̂) + ln(n)v, where

n denotes sample size and v is the number of parameters (which de-

pends on the number of latent classes m), are given in Table 5 on page

30. In both samples BIC(ψ̂) is lowest with four latent classes and

AIC(ψ̂) is lowest with five. We will report estimation results up to

five classes, which seem sufficient to capture any unobserved hetero-

geneity contained in our samples.

To ease reading of the Tables we have reordered the types in a de-

creasing order of scholastic ability as measured by the probability of

O-Level achievement (which can be done since finite mixture models
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are invariant to types’ rearrangment). So U = 1 type has highest

probability of achieving O-Level for given parental background.

4.1. Schooling attainment. Estimated parameters of the schooling

attainment equation (6) page 11 are contained in Tables 1 and 2 below.

2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αOL
1 1.8364 0.0840 2.5611 0.1658 2.6280 0.2268 2.4268 0.2818
αOL

2 -1.3569 0.0829 0.5987 0.0831 1.4577 0.1129 2.3957 0.2370
αOL

3 - - -2.0429 0.1345 -0.8510 0.1071 0.5670 0.1419
αOL

4 - - - - -3.5415 0.5486 -1.1811 0.1380
αOL

5 - - - - - - -4.4320 1.3423
βOL

f 0.0406 0.0441 -0.0075 0.0453 -0.0053 0.0452 -0.0079 0.0459
βOL

m 0.1171 0.0514 0.0952 0.0523 0.0950 0.0529 0.1075 0.0528

Table 1. Daughters OL

2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αOL
1 1.5644 0.0789 2.2944 0.1376 2.4529 0.1807 2.6017 0.2024
αOL

2 -1.7472 0.0884 -0.3446 0.0758 0.8778 0.1265 1.1766 0.1758
αOL

3 - - -2.4201 0.1627 -1.5463 0.1613 -0.1178 0.2598
αOL

4 - - - - -2.3635 0.1813 -1.5625 0.1594
αOL

5 - - - - - - -2.4097 0.1881
βOL

f 0.1860 0.0454 0.1360 0.0466 0.1431 0.0488 0.1102 0.0524
βOL

m -0.0439 0.0523 -0.0352 0.0535 -0.0828 0.0560 -0.0809 0.0599

Table 2. Sons OL

A glance at the two tables above confirms the gender-dependent sec-

ondary effects described in the introduction. Indeed, the coefficients

of the parents’ education variables in the OL equation (last two rows

in the Tables) show that after controlling for the child’s schooling en-

dowments, the father’s education significantly helps his son’s chance

of achieving OL certification, and not his daughter’s; and that on
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the other hand, mothers’ education helps daughters’ schooling but not

sons’. Notice that estimated β coefficients are similar in both samples

under 3, 4 or 5 latent classes, and that father’s effect on sons seems to

be greater and more significant than mother’s effect on daughters. The

results above also show that the effect of being a high rather than low

U type is overwhelming for O-Level achivement, as can be seen by look-

ing at the α-coefficients. Since parents’ schooling has been centered,

each α indicates the logit of the probability of O-Level achivement for

an individual with average parental schooling. Recall that in the logit

scale a change of value, say, from -2 to +2 implies a change in the

probability of success from about 12% to 88%.

The relevance of unobserved heterogeneity we find in this paper can

be seen as a furtrher validation of the analyisis of Keane and Wolpin

[24], who estimate a a dynamic structural model of schooling, work,

and occupational choice decisions with four unobserved types. They

find that unobserved endowment heterogeneity, as measured by innate

talents and human capital accumulated up to the age of 16, accounts for

90 percent of the variance in lifetime utility. Understanding unobserved

heterogeneity thus is of primary importance, and the work which is

currently being done by Heckman and collaborators ([11, 12, 19]) seems

a very promising step towards that direction.

4.1.1. Secondary effects. We translate the above estimates into a

quantitative appraisal of the secondary effect. We consider the effect on

OL attainment (conditional on unobserved endowment) of increasing a

parent education by three years of schooling (which seems a reasonable
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measure of change of educational status), leaving unchanged the school-

ing of the other parent, starting from a situation where both parents

have an average level of schooling (here denoted by µi, i = f,m).

The average effect of increasing a parent’s schooling for a given level

of child’s endowment U can be calculated as:

δ(u, Si) = Pr(OL = 1 | Sj = µj, Si = µi + 3, U = u)−

Pr(OL = 1 | Sj = µj, Si = µi, U = u)

= Λ(aOL(u) + 3βOL
i )− Λ(aOL(u)), i, j = f,m, u = 1, . . . ,m

where Λ(t) = exp(t)/(1+exp(t)) denotes the logit link function, and the

second equation follows since we have centered father’s and mother’s

schooling. These effects can be consistently estimated using the coef-

ficients in the OL-equation; furthermore, using the estimated variance

matrix of (aOL(u), βOL
i ), an asymptotic standard error can be derived

by application of the delta method. Their numerical values are in the

following table, for the case of 4 unobservable types:

Daughters

δ(u, Sf ) se δ(u, Sm) se
U=1 -0.0010 0.0086 0.0158 0.0087
U=2 -0.0024 0.0210 0.0398 0.0202
U=3 -0.0033 0.0283 0.0629 0.0369
U=4 -0.0004 0.0036 0.0089 0.0074

Sons

δ(u, Sf ) se δ(u, Sm) se
U=1 0.0262 0.0088 -0.0201 0.0148
U=2 0.0806 0.0247 -0.0540 0.0381
U=3 0.0709 0.0285 -0.0331 0.0205
U=4 0.0403 0.0175 -0.0176 0.0108

Table 3. Secondary Effects of Father’s and Mothers’ Schooling
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The table shows that the secondary effect, measured as difference in

probabilities of achievement, is non-negligible and statistically signifi-

cant only for fathers on sons; notice also that direct effects are highly

nonlinear in U . As an example, for fathers on sons we find that that

for U = 1 the probability of getting OL certification passes from 0.9208

to 0.9470, and for U = 2 from 0.7064 to 0.7870.

4.1.2. Pooled Sample. For the sake of comparison we have estimated

model (9) on the pooled sample of sons and daughters. Below for

semplicity we only report the estimated results of the secondary effects

βOL in the case of 5 latent classes (in the pooled sample this corresponds

to the lowest BIC value).

coeff se

βOL
f 0.0418 0.0348
βOL

m 0.0213 0.0386

Table 4. βOL in pooled sample

As can be seen by comparing these estimated coefficients with the

corresponding ones in the daugthers and sons subsamples in tables 1

and 2, the pooled sample estimates are approximately equal to the

average of the corresponding estimates for daughters and sons. They

suggest a somewhat stronger role of fathers, but the coefficients are not

significant. Thus considering sons and daughters subsamples separately

is crucial for clarifying the nature of this asymmetry.

4.2. Endowments. Estimates for the endowment equation (7) page

11 are contained in Tables 6 and 7 in the appendix. Both tables reveal

a very strong positive association between child’s endowment U and

family background characteristics, since having more educated and/or
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more concerned parents decreases the odds of being a type U = u + 1

rather then U = u for all u’s in both samples (recall we have rearranged

the types according to their probability of O-level achievement). This

is seen from the negative significant values of most β’s. However, as

we discuss in section 3 above and in the introduction, since we do not

control for parents’ unobservable endowments, these estimates of the

primary effect of parents schooling may be biased.

4.3. Test scores. Finally, parameters estimates of the auxiliary equa-

tion (8) page 11 are contained in Tables 8 to 13 in the appendix. The

tables show that knowledge of the child’s type helps overwhelmingly

to predict both math and reading test scores, and to a lesser extent

non cognitive test results. Notice also that while math and reading

test scores are increasing in the latent types (that is, U = u types

have stochastically greater cognitive test scores than U = u + 1), this

does not hold exactly in these samples for non cognitive scores. Notice

also that in both samples even after conditioning on U , there is still

in general a strong positive correlation between early and late test re-

sults, as shown by the generally significant values of the ρ parameters.

This confirms that the increased generality of our model with regard

to conditional dependence closely matches the complexity of the real

processes under study. In practice, this dependence may be taken an

an indication that certain subsets of responses require, in addition to

the overall endowment captured by U , a certain amount of specific

abilities.
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5. Concluding Remarks

Within the broad issue of education transmission there are two im-

portant recent lines of research related to the present work. One ana-

lyzes the causal effect of parents’ education on children’s controlling for

parents’ unobserved endowment, by use of twin parents, adoptees or

compulsory schooling law instruments ([1, 4, 5, 6, 21, 27]). The other,

lead by Heckman ([11, 12, 19]) studies the effect of sequential interven-

tions and their complementarity on the evolution of endowments and

on labor market outcomes.

We follow an early insight of Boudon [8], who distinguished between

‘primary’ and ‘secondary’ causal effects, which is being actively inves-

tigated by sociologists ([15], [23]).6 By applying recently developed

finite mixture models to the NCDS dataset, the present paper con-

trols for the child’s own schooling endowments at the age of 16, and

measures the secondary effect of parents’ schooling on children’s educa-

tional achievement at the same age. The effect of parents’ schooling on

children’s educational attainment given the latter’s potential mainly

reflects parental pressure, and can thus be interpreted as a role effect.

To allow for the possibility of its dependence on gender we consider

sons and daughters subsamples separately. We find that fathers’ edu-

cation has a significant secondary effect on children’s, but its impact

is entirely confined to their sons; mothers’ education has a slightly less

significant secondary effect on daughters.

6([15] and [23] find that secondary effects are sizeable, accounting for roughly a
quarter of the total effect. Their results are however not directly comparable with
ours since estimation procedures, data employed and variable definitions are differ-
ent.
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This result may reflect social norms of Western families in the nineteen-

seventies (the data domain), and if the women’s role has changed a dif-

ferent picture may emerge from more recent data. But the message we

get from our findings remains that children respond to family pressure

on schooling attainment. From a policy – or rather ‘cultural’– view-

point this suggests that when parents’ pressure is weak only the social

environment, school primarily, can make up for this loss by helping the

young to appreciate the value of education.
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Appendix A: Primary and secondary causal effect

In this appendix we derive an expression for the decomposition of

total effect of parents’ education on their children’s into primary and

secondary effects which extends to a general context the decomposition

for the linear model given in the Introduction Consider the following

causal diagram where Y is a binary outcome, X is a discrete input of

interest, U and V are discrete unobservable variables and T is also a

discrete response:

V

��

// X

~~~~
~~

~~
~

��

T Uoo // Y

This is a simplified version of the probability model described in (8)

where Y represents scholastic attainment andX parent’s years of school-

ing while U and V are meant to capture, respectively, child’s and par-

ent’s unobservable endowments and T represents the response to a set

of ability tests. For conciseness and when no ambiguity arises, we use

the convention that a conditioning variable will be denoted by its value,

thus for example Pr(Y | x, v) means Pr(Y | X = x, V = v). Let also

∆S,s(t1, t0 | w) = Pr(S = s | t1, w)− Pr(S = s | t0, w)

denote the causal effect of setting T = t1 rather than T = t0 on the

probability of S = s when controlling for W = w.

Proposition. Under the conditional independencies encoded in the

causal diagram above,

∆Y,1(x+ 1, x | v) =
∑

u
∆Y,1(x+ 1, x | u) Pr(U = u | x, v)

+
∑

u>u0

∆U,u(x+ 1, x | v)∆Y,1(u, u0 | s+ 1),
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where U ≥ u0.

Proof. By using the conditional independence between Y and V given

X, U ,

Pr(Y |x, v) =
∑

u
Pr(Y | x, u) Pr(U = u | x, v);

by substitution, the expression for ∆Y,1(x+ 1, x | v) may be expanded

as

∑
u

[
Pr(Y = 1 | x+ 1, u) Pr(U = u | x+ 1, v)

− Pr(Y = 1 | x, u) Pr(U = u | x, v)
]
.

The result follows by adding and subtracting
∑

u Pr(Y = 1 | x +

1, u) Pr(U = u | x, v), rearranging terms and noting that, if u0 is the

minimum of U , we may write Pr(U = u0 | x, v) = 1 −
∑

u>u0
Pr(U =

u | x, v). �

The first component may be interpreted as a weighted average of

the secondary effect of X on Y while the second term is the sum of

the products of the effect of X on U times the effect of U on Y and

may be interpreted as a measure of the primary effect. Though the

above decomposition is not unique, it is one way of generalizing the

decomposition which holds in the system of linear equations given in

the introduction.

Finally, notice that the causal diagram above implies that, if we do

not control for V , there is an omitted variable bias in the calculation

of the effect of X on U unless X and V are independent.
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Appendix B: Estimation and Identifiability

The true log-likelihood. Let n(i) be the vector of size t = 2 × 46

containing the frequency table of the response variables Y in lexico-

graphic order for the subjects with covariate xi; if there is a single

subject with such features, n(i) is a vector of 0s except for a 1 in the

cell corresponding to the response pattern y(i). We will denote by s the

number of strata, i.e. the number of different covariate configuration in

the sample.

Let also q(i) denote the vector whose elements q(i,y) equal to the

probability of the response pattern y for subjects with covariate xi.

The log-likelihood may be written as

L(ψ) =
∑

Li(ψ) =
∑

n(i)
′
ln[q(i)].

Here ψ is the full vector of parameters defined in equation (9); in the

right hand side it is q that depends on it, we have omitted dependence

to ease reading. Let p(i) denote the vector with elements p(i, u,y)

equal to the probability of the event (u,y) (again in lexicographic order

with the categories of U running slowest) for subjects with covariate

xi and m(i) be the vector containing the corresponding unobservable

frequency table; finally let L = (1m+1
′⊗I t) denote the matrix which

transforms the latent frequencies into the observed ones, so that n(i)

= Lm(i) and q(i) = Lp(i). Because ψ is defined in terms of the

latent probabilities, maximizing L(ψ) may be seen as a missing data
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problem which may be tackled by the EM algorithm (Dempster–Laird–

Rubin [14]). If the latent U could be observed, the corresponding log-

likelihood would have the form

Λ(ψ) =
∑

Λi(ψ) =
∑

m(i)
′
ln[p(i)].

The E step. Because the multinomial is a member of the exponential

family, the conditional expectation involved in the E step is equivalent

to computing the so called posterior probability of latent class U given

the observed configuration y

Pr(U | y,xi) =
p(i, U,y)

q(i,y)

so that m(i, u,y) = n(i,y) Pr(u | y,xi) follows from a simple expecta-

tion of a multinomial distribution for U .

The M step. Implementation of the Fisher scoring algorithm which

maximizes Λ(ψ) with respect to the model parameters ψ requires com-

putation of the score vector (first derivative with respect to ψ) and

of the expected information matrix (minus the expected value of the

second derivative). Since Λ(ψ) is a multinomial log-likelihood, expo-

nential family results make such calculations straightforward. In brief,

we rewrite Λ in terms of the canonical parameters of the multinomial

distribution, say θi, and exploit the fact that there are invertible and

differentiable mappings from θi to the vector of probabilities p(i) and

from p(i) to λi (the latter mapping is described in Theorem 1 of [2]),

while λi is linked to ψ by the linear regression model. Calculations of

the score vector and the expected information matrix are described in

the following section.



EDUCATION TRANSMISSION: A FINITE MIXTURE MODEL 28

Asymptotic variances. Though the EM algorithm is very reliable,

by itself, it does not provide a consistent estimate of the variance matrix

of the model parameters. An estimate of the variance matrix may be

derived from the expected information matrix of the true likelihood

as follows. Write Li(ψ) = n(i)
′
G̃γi − ni ln[1

′
exp(G̃γi)] where γi,

the canonical parameter of the observed multinomial, is defined by

H̃ ln[L exp(Gθi)/1
′
exp(Gθi)] where H̃ is a (t−1)× t contrast matrix

of full row rank, G̃ is its right inverse and G is the design matrix

which defines the latent canonical parameters θi and has v columns

of full rank. Let γ denote the vector obtained by stacking the γi one

below the other, similarly for θ and λ. By the chain rule

∂L(ψ)

∂ψ
′ =

∂L(ψ)

∂γ
′

∂γ

∂ψ
′ = δ

′
D,

where δ has blocks of the form G̃
′
(n(i)− niqi) with ni = 1

′
n(i). Be-

cause, obviously, E (δ) = 0, it follows that the information matrix takes

the form

F = D
′
diag [n1Ω1 , . . . , nsΩs ]D,

where Ωi = diag(qi)− qiq
′
i and s is the number of strata. An explicit

expression for computingD may be derived by the chain rule as follows

D =
∂γ

∂θ
′
∂θ

∂λ
′
∂λ

∂ψ
′ = QRB;

because γ, θ and λ are made of s blocks, one for each stratum, Q and

R are block diagonal with elements

Qi =
∂γi

∂qi

′
∂qi

∂pi

′
∂pi

∂θi
′ = H̄diag(qi)

−1LΩiG

Ri =

[
∂ηi

∂pi

′
∂pi

∂θi
′

]−1

=
[
Cdiag(Mpi)

−1MΩiG
]−1

.
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Model identifiability. A model is globally identified when the map-

ping from q (or equivalently γ) and ψ is one to one. The weaker notion

of local identifiability (see Catchpole and Morgan, [10]), which is easier

to verify, suffices to ensure that asymptotic approximations hold. This

requires that at any ψ0 the set of points such that ‖q(ψ)−q(ψ0)‖ ≤ ε

satisfy ‖ψ − ψ0‖ > δ > 0. The results of Catchpole and Morgan

(1997, Theorem 4) imply that, the fact that D is of full rank for any

admissible β, is a necessary and sufficient condition for the model to

be locally identifiable; a similar result was proved by Rothemberg, [29]

who showed that the information matrix must be positive definite ev-

erywhere.

A necessary condition for local identifiability is that the size of γ

is greater or equal to the size of ψ; however, with non linear mod-

els, there are several counterexamples showing that this condition is

not sufficient. Because general results on identifiability of the class of

models proposed in this paper are not available, we have applied the

method proposed by Forcina [16]. This provides a way of drawing a

sufficiently large random sample of points from the parameter space

and an efficient way of checking numerically whether, at each point,

the jacobian is well away from rank deficiency. Because our model has

passed such a text with a sample of 10,000 draws, we are confident that

the model is indeed locally identified.
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Appendix C: Log-Likelihood, BIC and AIC

Daughters Sons

latent cl. param. L(ψ̂) BIC(ψ̂) AIC(ψ̂) L(ψ̂) BIC(ψ̂) AIC(ψ̂)

2 39 -19419.04 39146.18 38916.09 -20492.98 41294.06 41063.96
3 51 -19076.66 38553.72 38255.32 -20084.53 40571.95 40271.06
4 63 -18968.75 38432.11 38063.51 -19977.58 40452.85 40081.16
5 75 -18925.14 38439.09 38000.28 -19938.27 40469.03 40026.54

Table 5. Maximized log-likelihood, BIC and AIC



EDUCATION TRANSMISSION: A FINITE MIXTURE MODEL 31

Appendix D: Tables for Endowments

2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αU
2 -0.3603 0.0549 0.4166 0.0761 0.9273 0.1229 1.2911 0.2410
αU

3 - - -0.5558 0.0791 -0.1846 0.0761 0.1055 0.1322
αU

4 - - - - -1.5904 0.1964 -0.1100 0.1118
αU

5 - - - - - - -1.8189 0.2738
βU

2,f -0.1957 0.0453 -0.2029 0.0419 -0.1930 0.0445 -0.0782 0.0548
βU

2,m -0.1770 0.0507 -0.1656 0.0484 -0.1917 0.0528 -0.2582 0.0674
γU

2,f -1.5466 0.1125 -0.8420 0.1486 -0.6708 0.2032 -0.7945 0.3389
γU

2,m -1.0654 0.1120 -0.6054 0.1458 -0.4791 0.1940 -0.2199 0.2953
βU

3,f - - -0.1106 0.0611 -0.0569 0.0552 -0.2133 0.0652
βU

3,m - - -0.0921 0.0650 -0.0748 0.0631 0.0193 0.0736
γU

3,f - - -1.2381 0.1470 -1.0717 0.1487 -0.5359 0.2050
γU

3,m - - -0.8422 0.1408 -0.7352 0.1466 -0.5219 0.2018
βU

4,f - - - - -0.3281 0.1156 0.0373 0.0751
βU

4,m - - - - -0.0624 0.1025 -0.1384 0.0804
γU

4,f - - - - -1.0747 0.2876 -0.9098 0.1905
γU

4,m - - - - -0.7423 0.2429 -0.5787 0.1866
βU

5,f - - - - - - -0.3582 0.1422
βU

5,m - - - - - - -0.0392 0.1236
γU

5,f - - - - - - -1.1035 0.3870
γU

5,m - - - - - - -0.7362 0.3078

Table 6. Daughters U

2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αU
2 -0.1297 0.0513 0.2780 0.0635 0.3230 0.0977 0.0468 0.1126
αU

3 - - -0.7062 0.0817 -0.1351 0.1023 -1.0552 0.2608
αU

4 - - - - -0.5905 0.1266 1.1924 0.2159
αU

5 - - - - - - -0.6212 0.1308
βU

2,f -0.2457 0.0447 -0.2616 0.0430 -0.2112 0.0476 -0.1665 0.0498
βU

2,m -0.2796 0.0519 -0.1674 0.0504 -0.1636 0.0580 -0.1729 0.0624
γU

2,f -1.3505 0.1109 -0.7676 0.1359 -0.4590 0.1819 -0.4728 0.1921
γU

2,m -0.7953 0.1106 -0.5649 0.1332 -0.3389 0.1756 -0.3162 0.1863
βU

3,f - - -0.0725 0.0675 -0.1266 0.0721 -0.2455 0.1408
βU

3,m - - -0.1955 0.0716 -0.1564 0.0797 0.0220 0.1304
γU

3,f - - -1.2015 0.1558 -0.7579 0.1782 -0.0028 0.3142
γU

3,m - - -0.4712 0.1460 -0.4401 0.1757 -0.0910 0.3107
βU

4,f - - - - -0.0028 0.0897 0.0590 0.1393
βU

4,m - - - - -0.1212 0.0948 -0.1618 0.1243
γU

4,f - - - - -0.9131 0.2113 -0.7393 0.2894
γU

4,m - - - - -0.3900 0.1929 -0.3770 0.2866
βU

5,f - - - - - - 0.0058 0.0916
βU

5,m - - - - - - -0.1313 0.0960
γU

5,f - - - - - - -0.9297 0.2153
γU

5,m - - - - - - -0.3969 0.1960

Table 7. Sons U
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Appendix E: Tables for Auxiliary Responses

2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αEM
1 3.0125 0.0962 4.4651 0.1509 4.9269 0.1877 5.8042 0.3120
αEM

2 -0.0885 0.0602 1.9942 0.1078 2.6795 0.1219 3.7201 0.1837
αEM

3 - - -0.6688 0.0830 0.5600 0.0962 2.0592 0.1574
αEM

4 - - - - -1.8420 0.2436 0.0983 0.1169
αEM

5 - - - - - - -2.1136 0.3435
δEM
3 -1.8558 0.0723 -2.1502 0.0882 -2.0739 0.0817 -2.1675 0.0899
δEM
4 -3.4321 0.0931 -4.1088 0.1243 -4.0054 0.1178 -4.1757 0.1288

αLM
1 1.8991 0.1524 4.4272 0.3106 4.9899 0.3277 6.4947 0.5699
αLM

2 -0.7827 0.0845 0.9376 0.1558 2.0736 0.1946 4.0399 0.3801
αLM

3 - - -0.9589 0.0927 -0.2271 0.1283 -1.0212 0.2091
αLM

4 - - - - -1.4779 0.1713 -0.3871 0.1273
αLM

5 - - - - - - 1.6843 0.2322
ρLM

2 0.5219 0.1181 0.3541 0.1370 0.2088 0.1412 0.2046 0.1428
ρLM

3 1.1376 0.1391 0.5423 0.1673 0.5987 0.1666 0.4242 0.1824
ρLM

4 2.6546 0.1541 1.4526 0.2002 1.2820 0.2165 -0.9197 0.2404
δLM
3 -2.1085 0.0862 -2.0929 0.0803 -2.1555 0.0915 -2.2235 0.0934
δLM
4 -4.1554 0.1143 -5.0585 0.2167 -4.7837 0.1636 5.2271 0.2465

Table 8. Daughters Math

2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αEM
1 3.2306 0.0966 4.6058 0.1444 5.3432 0.1895 5.8617 0.3059
αEM

2 0.1241 0.0558 1.8360 0.1006 2.6035 0.1348 2.2261 0.1518
αEM

3 - - -0.8502 0.0939 1.2390 0.1219 5.0838 0.4649
αEM

4 - - - - -1.4455 0.1633 1.1886 0.1243
αEM

5 - - - - - - -1.4929 0.1725
δEM
3 -1.6050 0.0617 -1.9688 0.0828 -1.9951 0.0831 -2.0646 0.0866
δEM
4 -3.3342 0.0896 -4.0718 0.1216 -4.1923 0.1277 -4.7819 0.2590

αLM
1 2.6603 0.1638 4.6509 0.2641 5.9619 0.3868 5.6605 0.3868
αLM

2 -0.5548 0.0812 1.1428 0.1555 3.0557 0.2534 3.2672 0.2811
αLM

3 - - -0.8976 0.0944 0.1138 0.1735 1.6861 0.4079
αLM

4 - - - - -0.9049 0.1073 0.0581 0.1713
αLM

5 - - - - - - -0.9253 0.1097
ρLM

2 0.8671 0.1140 0.4564 0.1391 0.4143 0.1572 0.4308 0.1572
ρLM

3 1.2216 0.1316 0.5748 0.1626 0.5380 0.1860 0.6355 0.1925
ρLM

4 2.3412 0.1488 0.9904 0.1991 0.4225 0.2735 0.9508 0.3229
δLM
3 -1.7609 0.0732 -1.7080 0.0718 -1.9336 0.0930 -1.9100 0.0898
δLM
4 -4.1827 0.1234 -4.4783 0.1571 -4.8104 0.1766 -4.8957 0.2047

Table 9. Sons Math
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2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αER
1 3.7837 0.1161 5.1617 0.1745 5.8778 0.2112 7.2252 0.4740
αER

2 0.1260 0.0603 2.7629 0.1430 3.7055 0.1558 4.5904 0.2125
αER

3 - - -0.4708 0.0816 0.9414 0.1122 3.2890 0.2108
αER

4 - - - - -2.0537 0.2983 0.4091 0.1388
αER

5 - - - - - - -2.9811 0.7107
δER
3 -2.0859 0.0838 -2.4660 0.1195 -2.4651 0.1059 -2.7146 0.1474
δER
4 -4.0245 0.1126 -4.6476 0.1510 -4.7652 0.1475 -5.0015 0.1800

αLR
1 1.1343 0.1753 2.3968 0.2360 3.6066 0.3043 4.3060 0.3744
αLR

2 -1.2773 0.1019 0.5244 0.1846 1.7598 0.2408 2.6201 0.2847
αLR

3 - - -1.4654 0.1107 -0.3637 0.1632 -1.1907 0.2647
αLR

4 - - - - -2.4432 0.2873 -0.6035 0.1608
αLR

5 - - - - - - 3.0243 0.5374
ρLR

2 1.2380 0.1308 0.8613 0.1539 0.5141 0.1741 0.3800 0.1789
ρLR

3 2.0867 0.1602 1.6692 0.1847 1.2482 0.2041 1.1053 0.2220
ρLR

4 3.6859 0.1784 2.8772 0.2095 2.2226 0.2346 -1.9933 0.2508
δLR
3 -2.5767 0.1028 -2.5349 0.0959 -2.6384 0.1109 -2.6245 0.1105
δLR
4 -5.0011 0.1334 -5.1866 0.1428 -5.3922 0.1603 5.3774 0.1564

Table 10. Daughters Reading

2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αER
1 3.2408 0.1024 4.4681 0.1426 4.9987 0.1727 5.1789 0.1990
αER

2 -0.1731 0.0565 1.6788 0.1021 2.5469 0.1383 2.2806 0.1479
αER

3 - - -1.3916 0.1144 0.9202 0.1239 3.8558 0.3396
αER

4 - - - - -2.2182 0.2358 0.8401 0.1243
αER

5 - - - - - - -2.2538 0.2460
δER
3 -1.8416 0.0732 -2.1758 0.0892 -2.1810 0.0884 -2.2401 0.0920
δER
4 -3.4048 0.0968 -4.0315 0.1224 -4.0869 0.1239 -4.2927 0.1569

αLR
1 1.1503 0.1429 2.7816 0.2238 3.0218 0.2460 2.9084 0.2481
αLR

2 -0.8300 0.0785 1.1892 0.1756 1.9570 0.2116 2.0529 0.2145
αLR

3 - - -1.4469 0.1109 0.5205 0.1785 1.1566 0.3152
αLR

4 - - - - -1.8929 0.1772 0.4585 0.1747
αLR

5 - - - - - - -1.9478 0.1877
ρLR

2 1.2366 0.1123 0.2815 0.1631 0.1723 0.1719 0.2157 0.1695
ρLR

3 1.9857 0.1414 1.0068 0.1798 0.9196 0.1852 1.0390 0.1894
ρLR

4 3.7814 0.1601 2.5650 0.2031 2.4028 0.2135 2.5973 0.2262
δLR
3 -2.0306 0.0768 -2.2206 0.0884 -2.1932 0.0862 -2.1974 0.0862
δLR
4 -4.5549 0.1167 -4.8273 0.1297 -4.7927 0.1282 -4.8239 0.1302

Table 11. Sons Reading
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2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αNP
1 2.1927 0.0701 2.3358 0.0856 2.4576 0.1057 2.6060 0.1424
αNP

2 1.1808 0.0639 1.9152 0.0821 2.1045 0.0874 2.2485 0.1082
αNP

3 - - 0.9918 0.0731 1.6103 0.0904 1.8993 0.1064
αNP

4 - - - - 0.4267 0.1189 1.5234 0.1020
αNP

5 - - - - - - 0.2182 0.1512
δNP
3 -1.4035 0.0502 -1.4217 0.0510 -1.4592 0.0533 -1.4642 0.0538
δNP
4 -2.6472 0.0624 -2.6749 0.0634 -2.7238 0.0657 -2.7308 0.0661

αNS
1 2.1218 0.0696 2.2920 0.0859 2.3387 0.1042 2.3371 0.1376
αNS

2 0.5990 0.0595 1.7404 0.0818 2.0691 0.0891 2.2418 0.1076
αNS

3 - - 0.3134 0.0709 1.0483 0.0868 1.8239 0.1123
αNS

4 - - - - -0.2783 0.1284 0.8161 0.0990
αNS

5 - - - - - - -0.4473 0.1628
δNS
3 -1.2287 0.0463 -1.2614 0.0482 -1.2876 0.0497 -1.2891 0.0498
δNS
4 -2.4909 0.0616 -2.5325 0.0634 -2.5638 0.0645 -2.5660 0.0646

Table 12. Daughters Non Cognitive

2LC 3LC 4LC 5LC

coeff se coeff se coeff se coeff se

αNP
1 1.4226 0.0612 1.5678 0.0725 1.6752 0.0852 1.6849 0.0854
αNP

2 0.0399 0.0544 0.7484 0.0678 1.1288 0.0897 1.1952 0.1069
αNP

3 - - -0.3062 0.0776 0.3714 0.0900 0.8594 0.1953
αNP

4 - - - - -0.4150 0.0956 0.3689 0.0896
αNP

5 - - - - - - -0.4312 0.0979
δNP
3 -1.1372 0.0405 -1.1498 0.0410 -1.1584 0.0414 -1.1597 0.0415
δNP
4 -2.2937 0.0574 -2.3085 0.0577 -2.3264 0.0583 -2.3294 0.0585

αNS
1 1.5214 0.0614 1.6289 0.0723 1.6688 0.0843 1.6610 0.0839
αNS

2 0.4411 0.0545 1.2138 0.0714 1.3662 0.0884 1.2654 0.1034
αNS

3 - - -0.0352 0.0758 1.0307 0.0937 1.7457 0.2022
αNS

4 - - - - -0.2707 0.0973 1.0024 0.0938
αNS

5 - - - - - - -0.2889 0.0997
δNS
3 -1.2061 0.0410 -1.2507 0.0431 -1.2593 0.0436 -1.2626 0.0438
δNS
4 -2.3938 0.0565 -2.4539 0.0584 -2.4623 0.0587 -2.4698 0.0591

Table 13. Sons Non Cognitive
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