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Abstract

We consider a principal who deals with two privately informed agents pro-
tected by limited liability. Their technologies are such that the �xed costs
decline with the marginal costs (the types), which are correlated. Because
of this, they display countervailing incentives to misrepresent type. We show
that, with high liability, the �rst-best outcome can be e¤ected for any type
if (1) the �xed cost is non-concave in type, under the contract that yields
the smallest feasible loss to agents; (2) the �xed cost is not very concave in
type, under the contract that yields the maximum sustainable loss to agents.
We further show that, with low liability, the �rst-best outcome is still imple-
mentable for a non-degenerate range of types if the �xed cost is less concave
in type than some given threshold, which tightens as the liability reduces, and
that the optimal contract entails pooling otherwise.
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1 Introduction

In some agency problems, the agent displays countervailing incentives, i.e. the

temptation both to overstate and to understate his private information (the type)

in the report to the principal, depending upon its speci�c realization. The existing

literature about countervailing incentives only focuses on cases in which the principal

deals with a single agent. However, there exist real-world situations in which this

assumption appears to be restrictive.

To �x ideas, consider the situations in which electricity is produced by local mo-

nopolists on franchised territories within some given geographical area, under the

regulation of a unique central authority entrusted for the whole area. The technolo-

gies that are used for power generation typically involve an inverse relation between

marginal and �xed costs. As Lewis and Sappington [6] point out, this is a source of

countervailing incentives. This means that, as long as marginal costs are privately

known in those contexts, regulator and producers are actually in a principal/multi-

agent relationship in which agents have countervailing incentives to misrepresent

type. Insisting on regulated utilities, further examples can be found in electricity

distribution and water and sewage services. In the latter, higher maintenance costs

(that are variable) typically allow for lower depreciation costs of capital (that are

�xed) and �rms go subject to centralized regulation, in general1.

When agents have correlated types but behave non-cooperatively, the distor-

tions that come from informational asymmetries can be either removed or (at least)

alleviated by properly designing a unique grand-contract for all of them. With a

centralized incentive scheme that conditions one agent�s compensation on the others�

reports, the principal can take advantage of the information externalities generated

by the reports and extract surplus (Crémer and McLean [2], Riordan and Sapping-

ton [10], McAfee and Reny [9]). In the examples previously made, it is typically

the case that, beside inducing countervailing incentives in the report made to the

regulator, costs are correlated across �rms, provided that they all operate in the

same sector. In fact, the presence of information correlation is one of the reasons

why regulation is entrusted to a unique authority.

Considering all this, in the present paper we study centralized contracting be-

tween a principal and multiple agents whose private information is correlated and

1Electricity distribution is a network activity that constitutes a natural monopoly. Both in
Europe and in America, the activity is typically performed by local monopolists under geographical
franchises that make the service mandatory to all existing and new users in the concerned areas.
The situation is similar in the water sector. The distribution of supplies to individual properties
and the subsequent removal of sewage are classic network monopolies. Bulk supply provision,
water treatment and sewage treatment normally enjoy spatial monopoly because of the high costs
involved in transporting bulky water products.

2



who have countervailing incentives. At this aim, we model a situation in which, for

each agent, the production technology includes a �xed cost that declines with the

privately known marginal cost (the type), which takes value in a continuum support.

This representation of the technology is similar to that Lewis and Sappington [6]

use to introduce countervailing incentives in their single-agent model. From this

perspective, we extend the analysis of Lewis and Sappington [6] to a multi-agent

environment with correlated information2. Moreover, for the analysis to be truly

positive, we focus on the realistic case in which agents are limitedly liable, i.e. they

can only sustain bounded �nancial losses ex post.

The extent to which the principal can bene�t from correlation depends on how

deep agents� pockets are. Could agents sustain unbounded de�cits ex post, the

principal would be able to enforce the e¢ cient quantity and retain all surplus ex

ante (the �rst-best outcome). Otherwise, quantity distortions and information rents

may appear (a second-best outcome). The e¢ ciency of the contractual outcome

also depends on the curvature of the agent�s cost function with respect to type, an

aspect that becomes relevant under limited liability. The more concave the cost

function, the larger the marginal gain from misreporting, so that the agent has a

stronger incentive to cheat. Thus, under limited liability, it may be more costly

for the principal to induce information release. Studying the relationship between

the level of agents�liability and their technological features, which are the source of

countervailing incentives, and assessing the way this a¤ects the design of the optimal

contract are core dimensions to our analysis.

We begin by exploring how �rst best can be implemented under limited liability.

As a �rst step of the analysis, we characterize the incentive scheme that most likely

enforces �rst best by yielding the lowest feasible de�cit to agents (i.e., by being the

least likely to violate the limits on liability) and provide a su¢ cient condition on

agents�cost functions for this outcome to arise.

Our �rst result is that the design of the incentive scheme that minimizes the

agents�loss is speci�cally a¤ected by the presence of countervailing incentives. Let

us clarify this point. Under this scheme, whether countervailing incentives arise

2The modelling device we use for the technology is �exible enough to sketch circumstances
other than technological features stricto sensu. Indeed, as Lewis and Sappington [6] evidence, it
further captures the possibility that countervailing incentives appear when valuable managerial
skills are associated with higher pro�ts foregone in the activities that could be performed alter-
natively. Countervailing incentives also appear when the agent�s reservation utility is decreasing
with his productivity in the activity performed for the principal (compare, for instance, Lewis and
Sappington [7], Maggi and Rodriguez-Clare [8], Brainard and Martimort [1]; Jullien [5]). As an
application, Lewis and Sappington [7] describe the relationship between a landowner who endows
her farmer with some capital grant at the outset of their agreement, which limits the farmer�s in-
centive to exaggerate production costs. Jullien [5] provides further applications concerning linear
and nonlinear pricing.
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or not, each type of the �rst agent is rewarded if some critical type of the second

agent is realized and incurs an equal de�cit whenever it is not, the critical type

being chosen such that the de�cit is minimized. As long as agents have a systematic

incentive to over-report, the principal picks the same critical type for all types of

the �rst agent, namely the one that is most likely to be drawn by higher �rst

agent�s types. Hence, whether an agent is rewarded or bears a loss solely depends

on the type that is realized for the second agent. This is the result Gary-Bobo and

Spiegel [4] obtain in a correlated information setting with systematic incentives to

overstate type3. When agents display countervailing incentives, this result remains

valid for low-marginal-cost agents, who have an incentive to over-report, but it does

not for high-marginal-cost agents, who have an incentive to under-report. For the

latter, minimizing the de�cit requires that the reward be assigned when the second

agent�s type that is most likely to be drawn by lower �rst agent�s types is realized.

Therefore, whether an agent is rewarded or bears a loss depends not only on the

type that is realized for the second agent but also on the realization of his own type.

From now on, we denominate "Maxmin" the incentive scheme that minimizes the

loss, using the terminology of Gary-Bobo and Spiegel [4].

Our second result is that the Maxmin contract entails full e¢ ciency if, provided

the conditional likelihood function of one agent�s type is concave in the other agent�s

type, the cost function (or, more precisely, the �xed cost) is non-concave in type

for either agent. Importantly, the presence of countervailing incentives tightens

the condition on costs, which would be less stringent otherwise. This emerges by

comparing our result with the literature. In a model similar to that of Gary-Bobo

and Spiegel [4] but without limited liability concerns, Riordan and Sappington [10]

assess that one simple way to implement �rst best is to use the same payo¤ scheme

as in Gary-Bobo and Spiegel [4], except that the relevant signal (corresponding

to the second agent�s type in our model) is not necessarily chosen to minimize

the loss. They show that such a scheme does e¤ect �rst best if the agent�s cost

function is less concave in type than so is the conditional likelihood function of the

relevant signal4. Our result di¤ers from that of Riordan and Sappington [10] for

the following reason. In a setting where countervailing incentives arise, there exists

some intermediary type that displays no incentive to cheat because its incentives

3Gary-Bobo and Spiegel [4] consider a situation in which the principal deals with a single
limitedly liable agent, whose cost is privately known and correlated with the distribution of publicly
observable shocks. In terms of information structure, this is tantamount to having the principal
face two agents with correlated private information, as in our model.

4This su¢ cient condition is surely satis�ed in the model of Gary-Bobo and Spiegel [4]. Indeed,
the latter assume that the conditional likelihood function of the shock is concave in type, whereas
the agent�s cost function is strictly convex. By doing so, they remove any concern about how cost
features can a¤ect the contractual outcome.
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to over and under-report perfectly compensate. From the principal�s perspective,

this is the least e¢ cient type in that it produces at highest total costs. Under the

Maxmin contract, this type is assigned a payo¤ equal to zero whatever the other

agent�s type. Information correlation plays no role in this payo¤ pro�le. Because

of this, the principal would be unable to extract surplus from other types that were

to mimic this particular type. It turns out that, with a concave cost function,

the Maxmin scheme leaves all other types with an incentive to actually mimic this

particular type.

The next contribution of our research rests on the observation that, under the

Maxmin contract, �rst best can only arise when the penalty it yields is smaller

than the maximum sustainable de�cit for all types (or, at the limit, it equals that

de�cit for some types), but this penalty has no relation with the agents� actual

liability. Because of this, the principal takes less advantage of type correlation than

she would if any larger sustainable de�cit were assigned to agents. This aspect is

especially relevant in environments with countervailing incentives. Indeed, in the

latter, intermediary types are assigned particularly low losses and this contractual

o¤er may become attractive for other types. To circumvent this di¢ culty, we propose

an alternative scheme under which the minimum feasible loss is replaced with the

maximum sustainable de�cit for all types (including the one that produces at highest

total costs). We show that this is the best possible contractual option for the

principal as it allows to exploit type correlation at maximum, given the agents�

liability. The bene�t is that �rst best is e¤ected under milder condition. While

under the Maxmin contract �rst best arises if the cost function is non-concave in

type, a condition that solely re�ects the presence of countervailing incentives, under

the alternative scheme it arises if the cost function is "not excessively" concave, a

condition that is relaxed the more liable agents are and the more type correlation is

exploited, given the agents�liability.

When limited liability is su¢ ciently tight that the minimum feasible loss exceeds

the maximum de�cit agents can sustain, albeit the relaxed condition described here

above is satis�ed, �rst best cannot be (fully) implemented. Our subsequent contri-

bution is to characterize the optimal second-best contract for this case. Our �ndings

show that, once again, the contractual features heavily depend both on the nature

of agents�incentives and on the cost characteristics that determine their intensity.

Two relevant situations can arise, depending on the curvature of the cost function

with respect to type.

If the cost function is less concave in type than some relevant threshold (the �rst

possible situation), then there exist some types for which �rst best is still e¤ected.

This outcome follows from the possibility to exploit type correlation by in�icting
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(bounded) losses in the presence of countervailing incentives. It does not appear in

correlated information environments with systematic incentives to over-report, as

represented by Gary-Bobo and Spiegel [4], in which tight limited liability prevents

�rst-best implementation for any type. In our model, �rst best survives for a contin-

uum range of intermediate types neighboring the "least e¢ cient". This is explained

by considering that, since such types display weak incentives to cheat, as they are

turned between the desire to over-report and that to under-report, the principal does

not need to assign large losses (and rewards) to induce them to truthtell. Therefore,

as far as intermediate types are concerned, the limits on liability remain irrelevant

in the contractual design. The �rst-best outcome is beyond reach for all remaining

types, instead. Yet, this does not mean that all remaining types receive a contract

that is similar to the second-best contract in Gary-Bobo and Spiegel [4]. Indeed, in

our setting, the second-best contract re�ects the circumstance that, moving away

from the intermediate types, lower and higher types exhibit increasingly stronger

incentives to over and under-report respectively. This involves that, for the types

immediately below and above the intermediate ones, the quantity is distorted just

enough to retain all surplus and, at the same time, to solicit information release

and satisfy the limits on liability. On the other hand, an information rent is con-

ceded to very low and very high types. As usual, this rent is contained by distorting

the quantity till the ensuing loss exactly compensates the surplus extraction gain

(the familiar e¢ ciency/rent-extraction trade-o¤). The second-best contract in our

framework compares with that in Gary-Bobo and Spiegel [4] with sole regards to

this last case. More precisely, the similarity concerns the contract designed for low

types with intense incentives to over-report. This is so because the countervailing

e¤ect is weak for such types, so that the principal faces a (nearly) standard adverse

selection problem.

If the cost function is more concave in type than the relevant threshold afore-

mentioned (the second possible situation), then also this cost characteristics, and

not only the limits on liability, has an impact on contractual performance. The

incentive problem is exacerbated to the point that information is not released unless

the principal induces pooling in the contract, i.e. an in�exible rule for some given

bunch of types. Under this rule, the quantity that is e¢ cient for the type that

has no incentive to cheat (the "least e¢ cient" type) is assigned to all types in its

neighborhood. Since that type is also the sole from which all surplus is retained ex

ante, it is the sole for which the �rst-best outcome is still enforced. Comparing with

Lewis and Sappington [6] - [7], it emerges that this incentive scheme is similar in

structure to the contract that is optimal in single-agent settings with countervailing

incentives when the �xed cost is concave in type.
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Further comparing the whole bulk of our results with those obtained in single-

agent contexts, we are able to shed light on how the presence of correlation and

liability a¤ects the "knife-edge" situation between pooling and separating equilibria

when moving from single to multi-agent relationships with countervailing incentives.

This is the last contribution of our research. Maggi and Rodriguez-Clare [8] show

that, in single-agent settings, the knife-edge situation is represented by the case of

linear �xed cost (linear reservation utility, in their model), in which the optimal

contract entails pooling and no rent for a range of intermediate types. Pooling is

removed as soon as the �xed cost becomes convex. It persists with all types but one

getting a rent as soon as the �xed cost becomes concave. According to our results,

in multi-agent environments with correlated information, the linear case would still

be the knife-edge situation if agents were unable to sustain any de�cit ex post. With

(limitedly) liable agents, it is rather given by the concavity threshold we mentioned

to distinguish the two situations that can be realized with tight limited liability.

Importantly, we �nd that this threshold relaxes as the maximum loss agents can bear

raises. We thus conclude that the possibility to take advantage of type correlation

by in�icting penalties to agents removes pooling in a class of situations in which it

would otherwise arise, i.e. in contexts where technologies are such that the �xed

cost is concave but not too concave in type, and that this class enlarges as agents�

pockets become deeper.

The reminder of the paper is organized as follows. In section 2, we present the

model. Section 3 focuses on implementation of the �rst-best outcome. In section 4,

we characterize the optimal contract for the case of tight limited liability. Section 5

concludes. Mathematical details are relegated to an Appendix.

2 The model

A risk-neutral principal P contracts with two risk-neutral agents A1 and A2.

Each agent i 2 f1; 2g has a distinct task, which is to produce a good in some
quantity qi: As in Lewis and Sappington [6], production costs are given by

Ci (qi; ci) = ciqi +K (ci) : (1)

Ai produces at marginal cost ci and bears the �xed cost K (ci) : The technology is

such that the �xed cost depends negatively on ci; i.e. K 0 (ci) < 0.

At the contracting stage, agent Ai is privately informed about his own type ci;

but he does not know the type cj of agent Aj, j 2 f1; 2g and j 6= i: Neither type

is known to P. The distribution of each ci; is commonly known to be taken over
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the support [c; c] : It is also commonly known that types are correlated. The joint

density function is f (c1; c2) and the cumulative distribution function F (c1; c2) =R c1
c

R c2
c
f (c1; c2) dc1dc2: The marginal density of each ci is fi (ci) =

R c
c
f (ci; cj) dcj

and the conditional distribution function is written f (cj jci ) = f (ci; cj) =fi (ci) :

Since the analysis is perfectly symmetric for the two agents, from now on we

refer to Ai as the generic agent and, when needed, to Aj; j 6= i 2 f1; 2g ; as the
other agent.

2.1 The principal�s programme

P o¤ers a grand-contract to agents. The Revelation Principle applies. Attention

can thus be restricted to direct revelation mechanisms, in which each agent truthfully

reports his type. To write the programme formally, we denote qi (ri; rj) and ti (ri; rj)

the quantity Ai is to produce and the transfer he has to receive when agents of type

ci and cj report ri and rj respectively. The ex post and the interim pro�t of Ai
when either agent reports truthfully, are respectively given by

�i (ci; cj) = ti (ci; cj)� [ciqi (ci; cj) +K (ci)] (2a)

Ecj [�i (ci; cj)] �
Z c

c

fti (ci; cj)� ciqi (ci; cj)�K (ci)g f (cj jci ) dcj: (2b)

Truthful reporting in a Bayesian setting is induced by satisfying, for each agent Ai
and each type ci; the following interim incentive constraint

Ecj [�i (ci; cj)] �
R c
c
fti (ri; cj)� ciqi (ri; cj)�K (ci)g f (cj jci ) dcj;

8ri; ci 2 [c; c] :
(IC)

Besides, P needs to satisfy the interim participation constraint

Ecj [�i (ci; cj)] � 0; 8ci 2 [c; c] ; (PC)

and the ex post limited liability constraint

�i (ci; cj) � �L; 8ci; cj 2 [c; c] ; (LL)

for some given L � 0:
Let S (qi (ci; cj)) the gross surplus that is generated, under truthful reporting,

when Ai provides qi (ci; cj) units of the good, with S (0) = 0; S 0 > 0; S 00 < 0;

S 0 (0) = +1 and S 0 (+1) = 0: P�s objective is to achieve the highest attainable

level of welfare. The latter is taken to be a weighed sum of P�s net surplus, namely
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P
i6=j V (qi (ci; cj)) =

P
i6=j [S (qi (ci; cj))� ti (ci; cj)] ; and the agents�pro�ts. For-

mally, P�s programme is written as:

Max
fqi(ci;cj);�i(ci;cj)g

fW (ci; cj) �
X
i6=j

Z c

c

Z c

c

[V (qi (ci; cj)) + ��i (ci; cj)] f (ci; cj) dcjdci

subject to (�)

(IC), (PC) and (LL),

with � 2 [0; 1] :

3 First-best implementation

At the �rst-best outcome (FB hereafter), for all types, the quantity is such that

marginal bene�t and marginal cost are equal, i.e. S 0(qfbi (ci)) = ci; and surplus is

entirely retained ex ante, i.e. Ecj
h
�fbi (ci; cj)

i
= 0:We devote this section to explore

in which ways and under which conditions P can enforce this outcome.

To make (LL) most likely satis�ed, a natural strategy for P is to o¤er the mech-

anism that minimizes the largest loss that each type ci might be assigned (compare

Gary-Bobo and Spiegel [4]). We �rst show how such a mechanism is to be designed

in the presence of countervailing incentives and highlight that it is rather requiring

in terms of global incentive-compatibility. To circumvent this di¢ culty, we sub-

sequently characterize an alternative incentive scheme that implements FB under

milder conditions.

3.1 The Maxmin scheme with countervailing incentives

Before moving to the analysis, we observe that, under FB implementation, (IC)

is conveniently replaced by the pair of conditions

qfbi (ci) +K 0 (ci)�
Z c

c

d�fbi (ci; cj)

dci
f (cj jci ) dcj = 0 (LIC)Z c

c

n
tfbi (ri; cj)� ciq

fb
i (ri)�K (ci)

o
f (cj jci ) dcj � 0; (GIC)

where tfbi (ri; cj) is the FB transfer P makes to Ai when he reports ri and Aj reports

cj: (LIC) requires that Ai has no incentive to report ri 6= ci in a neighborhood of his

true type ci (local incentive compatibility). (GIC) ensures that Ai has no interest

in reporting any ri 6= ci within the feasible set (global incentive compatibility).

Now let
�
�li (ci; c) ; :::; �

l
i (ci; c)

	
; with l 2 N+, any feasible pro�le of ex post
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pro�ts under which FB is implemented. Proceeding similarly to Gary-Bobo and

Spiegel [4], within this class, we shall identify the speci�c pro�le under which the

largest loss that either agent can be required to sustain is minimized. These are

the pro�ts under which (LL) is least likely to be binding. For this purpose, we

temporarily neglect (GIC) and (LL) and, for each ci; we solve the following problem:

Max
�
min

�
�1i (ci; c) ; :::; �

1
i (ci; c)

	
; min

�
�2i (ci; c) ; :::; �

2
i (ci; c)

	
; :::
	

subject to (Maxmin)

(LIC) and (PC).

The solution to (Maxmin) is found in two steps. First, the lowest pro�t (i.e. the

highest loss) that Ai might incur over all possible cj is identi�ed within any pro�le

of �rst-best pro�ts. Second, within the whole set of lowest pro�ts, the largest one

(i.e. the minimum loss) is selected. Once this solution is found, it is possible to

determine the whole pro�le of pro�ts to be used for FB implementation. Following

Gary-Bobo and Spiegel [4], we name this pro�le the "Maxmin" scheme. We describe

it in the lemmas stated hereafter.

Lemma 1 Under the Maxmin scheme, for any ci 2 [c; c] ; Ai is rewarded whenever
Aj is of some type cjr (ci) 2 [c; c] and bears the smallest feasible loss whenever

cj 6= cjr (ci) ; the loss being equal in size for all cj 6= cjr (ci) :

By this lemma, under the Maxmin scheme, for each type ci; the pro�le of payo¤s�
�li (ci; c) ; ::: ; �

l
i (ci; c)

	
reduces to only two values. This result is analogous to that

of Gary-Bobo and Spiegel [4]. As the latter explain, spreading punishments over as

many realizations of cj as possible (i.e., all feasible realizations but one) allows to

minimize the highest possible loss for each type of agent. This requires to minimize

the largest reward-loss wedge that can be realized over all possible realizations of cj:

Based on Lemma 1, for all ci 2 [c; c] ; the Maxmin pair of pro�ts is found to be

�li (ci; cj)
��
cj=cjr(ci)

=
h
qfbi (ci) +K 0 (ci)

i 1� f (cjr (ci) jci )
df (cjr (ci) jci ) =dci

� �fbi;r (ci) (3)

�li (ci; cj)
��
cj 6=cjr(ci)

=
h
qfbi (ci) +K 0 (ci)

i �f (cjr (ci) jci )
df (cjr (ci) jci ) =dci

� �fbi;p (ci) ; (4)

the di¤erence
h
�fbi;r (ci)� �fbi;p (ci)

i
being the lowest feasible wedge when FB is im-

plemented under (LIC) and (PC).

To see how cjr (ci) should be selected, �rst notice that this choice depends on

the sign of the sum qfbi (ci) +K 0 (ci) ; which may not be the same for all ci 2 [c; c] :
Suppose this sum is positive. Then, for (4) to be a loss (�fbi;p (ci) < 0); cjr (ci) must
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be such that its conditional likelihood raises with ci; i.e. df (cjr (ci) jci ) =dci > 0:

Moreover, for (4) to be the smallest feasible loss, cjr (ci) must be such that the

ratio f(cjr(ci)jci )
df(cjr(ci)jci )=dci is minimized. This is tantamount to requiring that the ratio

df(cjr(ci)jci )=dci
f(cjr(ci)jci ) be maximized. Observe that the latter ratio is the conditional hazard

rate that type cj = cjr (ci) be drawn as ci increases. This means that, for any

given ci; cjr (ci) is to be the value of cj that higher types are most likely to draw.

Intuitively, under interim break-even, making Ai most likely to be rewarded, given

his own type ci; allows P to contain the de�cit that Ai is to sustain for all cj 6=
cjr (ci) : Similar reasoning applies, mutatis mutandis, when q

fb
i (ci) +K 0 (ci) < 0: In

that case, cjr (ci) must be such that its conditional likelihood decreases with ci; i.e.

df (cjr (ci) jci ) =dci < 0; and the conditional hazard rate df(cjr(ci)jci )=dci
f(cjr(ci)jci ) is minimized.

That is, for any given ci; Ai is to be rewarded when the second agent�s type that

is most likely to be drawn by lower possible own types does materialize. The sole

situation in which the value of cjr (ci) is irrelevant arises when q
fb
i (ci) +K

0 (ci) = 0;

in which case both (3) and (4) reduce to zero.

To identify the values of cjr (ci) in (3) and (4), it is useful to make the following

assumptions.

Assumption 1 K 00 (ci) < �dqfbi (ci)

dci
;8ci 2 [c; c] :

Assumption 2 df(cjci )
dci

> 0; d
2f(cjci )
dc2i

< 0; df(cjci )
dci

< 0; d
2f(cjci )
dc2i

< 0; 8ci 2 [c; c] :

Assumption 3 The conditional likelihood function satis�es the following proper-
ties:

d

dci

�
f (cj jci )
f (c jci )

�
< 0; 8ci; cj 2 [c; c) ; (5)

d

dci

�
f (cj jci )
f (c jci )

�
> 0; 8ci; cj 2 (c; c] : (6)

Assumption 1 is equivalent to saying that the sum qfbi (ci)+K
0 (ci) is positive at

least at ci = c and decreases with ci for all its feasible values. Thus, if it decreases

fast enough, then there exists some bc 2 [c; c] at which it equals zero. Moreover, it
takes negative values 8ci 2 (bc; c] : Assumption 2 tells that the probability of drawing
type cj = c (resp. cj = c) for Aj increases (resp. decreases) with the type of Ai at a

decreasing rate. This is thus a requirement on the behaviour of f at two values of

cj; which we take to be c and c: Assumption 3 imposes a pair of monotone likelihood

ratio properties of the sort that is standard in the literature. Condition (5) involves

that df(cj jci )=dci
f(cj jci ) < df(cjci )=dci

f(cjci ) ; i.e. the conditional hazard rate that type cj = c be

drawn is higher than that of any cj 6= c for all ci: On the other hand, condition

11



(6) involves that df(cjci )=dci
f(cjci ) <

df(cj jci )=dci
f(cj jci ) ; i.e. the conditional hazard rate that type

cj = c be drawn is lower than that of any cj 6= c for all ci:

Our previous assumptions allow us to determine the values of cjr (ci) in (3) and

(4), as stated in the lemma hereafter.

Lemma 2 Suppose there exists bc 2 [c; c] such that qfbi (bc)+K 0 (bc) = 0: Then, under
Assumption 1 - 3, the type cjr (ci) for which Ai is rewarded takes only two values,

namely cjr (ci) = c 8ci 2 [c;bc) and cjr (ci) = c 8ci 2 (bc; c] :
In what follows, we maintain the hypothesis that bc actually exists, unless di¤er-

ently speci�ed. Because of Assumption 1, this means that we have cjr (ci) = c

for all ci for which qfbi (ci) + K 0 (ci) > 0 and cjr (ci) = c for all ci for which

qfbi (ci) + K 0 (ci) < 0: Observe that the speci�c choice of the reward types cj is

without loss of generality in the model. The properties of the likelihood function

in Assumption 2 and 3 could refer to any other pair of cost values. Yet, taking the

assumption to be satis�ed at the extremes of the cost support conveniently warrants

that Ai is assigned a loss over a continuum of types cj; namely [c; c) when ci < bc
and (c; c] when ci > bc:
FB implementation in contexts with a continuum of types and signals, like ours,

has been studied by McAfee and Reny [9]. They show that (almost) full surplus

extraction entails if there exist two signals at which f (� jci ) displays monotonicity
and concavity as it is the case in Assumption 2 (Remark 6 in their paper). This

is not a su¢ cient condition in our model though, because of the need to minimize

agents�losses under limited liability.

Furthermore, Riordan and Sappington [10] explore a single-agent framework in

which the agent�s types are correlated with some observable signals, the space of

which is smaller than that of the possible types. With regards to this framework,

they show that, under the circumstances described above, P can implement FB

using information about a unique signal cjr (ci) = cjr; 8ci; provided the conditional
likelihood function has analogous features to those described in Assumption 2 and 3

at that sole signal. This is what occurs in Gary-Bobo and Spiegel [4], who actually

consider a similar setting. By contrast, we focus on situations in which, for either

agent, types and signals (which are here the second agent�s types) take values on

a continuous support. Despite this, the need to satisfy (LL) involves that P refers

to fewer signals than available also in our case. However, while in Riordan and

Sappington [10] and Gary-Bobo and Spiegel [4] a unique signal su¢ ces, reference

to two signals is necessary in our environment with countervailing incentives5. For
5In particular, Gary-Bobo and Spiegel [4] take the highest possible signal to be most likely drawn

from higher types, for all types. In their setting, it su¢ ces to assume the �rst two conditions in
our Assumption 2 together with (5) in our Assumption 3.
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this reason, unlike in Gary-Bobo and Spiegel [4], the Maxmin scheme turns out to

be "region-speci�c", i.e. it is speci�cally characterized over di¤erent cost ranges.

Proposition 1 Suppose

L �
h
qfbi (ci) +K 0 (ci)

i f (cjr (ci) jci )
df (cjr (ci) jci ) =dci

; 8ci 2 [c; c] ; (7)

with cjr (ci) = c for ci < bc and cjr (ci) = c for ci < bc: Under Assumption 1 - 3, the
�rst-best outcome is implemented with ex post payo¤s (3) and (4) if

K" (ci) � 0; 8ci 2 [c; c] : (8)

The conditions reported in Proposition 1 are explained as follows. Condition

(7) follows from the circumstance that agents cannot bear unbounded losses. The

solution to (�) that is picked by the Maxmin scheme does not implement FB unless

(7) is satis�ed. This condition is similar to that in Proposition 2 of Gary-Bobo

and Spiegel [4], although it speci�es di¤erently according to whether ci < bc or
ci > bc: Condition (8) su¢ ces for the Maxmin payo¤ pro�le to be globally incentive
compatible in (�) : It requires that the �xed cost function be (weakly) convex in the

marginal cost.

Let us illustrate the intuition behind (8). The transfer an agent of type ci receives

when he reports ri and the other agent reports his true type cj is given by

ti (ri; cj) = riq
fb
i (ri) +K (ri) + �i (ri; cj) :

This transfer is composed of two elements. The �rst element, namely riq
fb
i (ri) +

K (ri) ; is a �xed payment equal to the total cost the agent would bear if he were

of type ri: The second element, namely �i (ri; cj) ; is an uncertain payment whose

value depends on the realization of cj: Because this realization is unknown to Ai; he

faces a lottery with expected valueZ c

c

�i (ri; cj) f (cj jci ) dcj = �
h
�fbi;r (ri)� �fbi;p (ri)

i
[f (cjr (ri) jri )� f (cjr (ri) jci )]

= � qfbi (ri) +K 0 (ri)

df (cjr (ri) jri ) =dri
[f (cjr (ri) jri )� f (cjr (ri) jci )] :

The introduction of this lottery is meant to o¤set the bene�t Ai might obtain with

a convenient report as a di¤erence between the �xed payment and his true cost. For

this to occur, the lottery should yield su¢ ciently high expected costs for mimicking

types. This requires that the wedge between the reward and the loss designed
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for type ri; as expressed by the ratio
qfbi (ri)+K

0(ri)
df(cjr(ri)jri )=dri ; be large enough. Indeed, this

allows P to exploit the correlation between types, as represented by the di¤erence

[f (cjr (ri) jri )� f (cjr (ri) jci )] ; to extract surplus. Recall however that, under the
Maxmin scheme, the wedge �fbi;r (ri) � �fbi;p (ri) is set at the minimum feasible level

for each ri and, in particular, it equals zero for ri = bc: Thus, whenever bc is reported,
the lottery disappears. Under this circumstance, type ci 6= bc is discouraged from
reporting bc if Z bc

ci

[K 0 (yi)�K 0 (bc)] dyi � 0; 8ci 2 [c; c] ;
which explains (8).

The literature has shown that some restriction on the properties of the cost

function is required for FB implementation also in the absence of countervailing

incentives. From Riordan and Sappington [10], we learn that, when the signal space

is smaller than the type space, together with the conditions on the likelihood function

of the relevant signal (Assumption 2 and 3), FB enforcement calls for restrictions on

the shape of the agent�s cost function. It is thus not surprising that a lower bound on

the concavity of K appears also in our setting, where P arti�cially reduces the space

of relevant signals (the second agent�s types) in the seek for an incentive scheme

that imposes as small penalties as feasible. If agents were not protected by limited

liability, then P would not need to use the speci�c ex post payo¤s that belong to

the Maxmin scheme and Remark 6 of McAfee and Reny [9], which we mentioned

above, would apply. That is, Assumption 2 would ensure that P could �nd a payo¤

pro�le that extracts surplus (almost) entirely, independently of the properties of the

agents�cost function.

The restriction imposed by (8) on the �xed cost function is tighter than the

condition identi�ed by Riordan and Sappington [10]. The latter only requires that

the agent�s cost function be less concave in type than the conditional likelihood

function at the relevant signal. As stated in the corollary below, a similar result

would entail in our model only in case agents were to display a systematic incentive

either to overstate or to understate type, whatever the cost realization.

Corollary 1 If there exists no bc 2 [c; c] such that qfbi (bc) +K 0 (bc) = 0; then, 8ci 2
[c; c] ; (8) is replaced by

K" (ci) �
h
qfbi (ci) +K 0 (ci)

i d2f (cjr (ci) jci ) =dc2i
df (cjr (ci) jci ) =dci

; (9)

with cjr (ci) = c when qfbi (ci)+K
0 (ci) > 0 and cjr (ci) = c when qfbi (ci)+K

0 (ci) < 0.

The corollary above emphasizes that the presence of countervailing incentives
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exacerbates the requirement on the properties of the cost function.

It should by now be clear that the concavity restriction appears because P adopts

the payo¤pro�le that allows her to minimize the largest potential de�cit. As already

illustrated, when this scheme is designed for agents displaying countervailing incen-

tives, the lottery tends to vanish as ri approaches bc: To circumvent this problem,
P should design a di¤erent mechanism under which (1) all agent�s types do face an

e¤ective lottery whatever their report and (2) (LL) is still satis�ed. We hereafter

describe how a scheme with these characteristics can be constructed.

3.2 An alternative scheme

Suppose (8) holds for all possible types, meaning that limited liability does not

(necessarily) compromise FB implementation. As already explained, to induce in-

formation release at no agency cost, the expected value of the lottery is to be low

enough.

Lemma 3 The ex post pro�ts that minimize the expected value of the lottery and,
at the same time, satisfy (LIC), (PC) and (LL) are such that Ai is rewarded for one

sole realization of cj 2 [c; c] ; 8i 6= j 2 f1; 2g ; and incurs the highest admissible loss
(�L) for all other realizations.

The scheme presented in the lemma is similar to the Maxmin scheme in that it

includes only one reward and equal losses. Yet, losses are here �xed at the largest

feasible level so as to minimize the incentive to misreport type for any given ci: Taken

together, Lemma 1 and 3 evidence that spreading losses over as many realizations

of cj as possible is bene�cial to P in two di¤erent ways. First, when the Maxmin

scheme is adopted, spreading losses and minimizing the reward-loss wedge for the

type cj at which this wedge is maximum allow P to minimize the largest de�cit that

agents could be required to incur. Second, under the alternative scheme, spreading

losses and maximizing the reward-loss wedge for each possible realization of cj allow

P to minimize the expected value of the lottery that agents are called to face.

Assumption 3 ensures that the type cj for which Ai is rewarded under the alter-

native scheme remains the same as under the Maxmin scheme, namely cjr (ci) = c

if ci < bc and cjr (ci) = c if ci > bc: The payo¤ pro�le is thus written
�fbi;r (ci; L) =

1� f (cjr (ci) jci )
f (cjr (ci) jci )

L; 8ci 2 [c; c] (10)

�fbi;p (ci; L) = �L; 8ci 2 [c; c] ; 8cj 2 [c; c] ; cj 6= cjr (ci) ; (11)
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so that the expected value of the lottery is given byZ c

c

�i (ri; cj) f (cj jci ) dcj = �L
�
1� f (cjr (ri) jci )

f (cjr (ri) jri )

�
:

This lottery is actually more e¤ective at extracting surplus from agents, as compared

to the one associated with the Maxmin scheme, because it allows P to take better

advantage of type correlation. As a result, FB is enforced under milder conditions.

Proposition 2 Suppose condition (7) holds. Under Assumption 1 - 3, the �rst-
best outcome is implemented with ex post payo¤s (10) and (11) if, 8ci 2 [c; c] and
8i 6= j 2 f1; 2g ;

K" (ci) �
�
qfbi (ci) +K 0 (ci)�

df (cjr (ci) jci ) =dci
f (cjr (ci) jci )

L

�
(12)

+
d2f (cjr (ci) jci ) =dc2i

f (cjr (ci) jci )
L;

with cjr (ci) = c for ci < bc and cjr (ci) = c for ci < bc:
This proposition states that, whenever the lowest loss that is compatible with

FB implementation is smaller than the largest de�cit agents can sustain, FB is

enforced with payo¤s (10) and (11) provided that K 00 does not fall below the lower

bound imposed by (12). Condition (7) and Assumption 2 ensure that this bound

is negative, showing that the requirement on the curvature of K is now relaxed as

compared to (8).

A clear message ensues from our analysis. FB is at hand also when K is concave,

provided that P is available to abandon the Maxmin scheme and opt for a mecha-

nism that possibly in�icts more important (though still feasible) penalties to agents.

Gary-Bobo and Spiegel [4] emphasize that resorting to the Maxmin scheme, rather

than o¤ering a payo¤ pro�le that entails larger de�cits, can be especially convenient

for a principal. Typically, regulators prefer to minimize the �nancial di¢ culties of

the regulated �rms both to avoid activity interruptions and because this is embar-

rassing for themselves. Our investigation evidences that, when the Maxmin scheme

is adopted in environments with countervailing incentives, the loss it yields might

result excessively low, on the opposite. This is actually the case when types are

very intensely turned between the desire to over-report and that to under-report,

i.e. when condition (8) is not met.

In the sequel of the analysis, we take (12) to be satis�ed. We thus neglect the

possibility that FB does not attain because �xed costs are too concave. We rather

focus on the more interesting case in which FB implementation is beyond reach
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because the limits on liability are particularly stringent.

4 The optimal contract with tight limited liability

In this section, we explore the situation in which (LL) is so tight that condition

(7) in Proposition 1 fails to hold. Under this circumstance, P cannot �nd a pro�t

pro�le that implements FB. She thus designs a second-best (SB hereafter) contract,

which is to be characterized in the sequel of the analysis.

To begin with, notice that, in fact, (7) is not violated for all feasible values of ci:

Lemma 4 Under Assumption 1 - 3, for any L � 0; at the solution to (�) ; there

exists a unique range of types [ci2; ci3] � [c; c] ; such that bc 2 [ci2; ci3] ; for which the
�rst-best outcome is implemented.

First of all, limited liability is not an issue as far as type bc is concerned. Indeed,
for this type, (7) is surely satis�ed since qfbi (bc) +K 0 (bc) = 0: Furthermore, (7) holds
for the types that lie in a neighborhood of bc; i.e. for all values of ci for which the
absolute value of qfbi (ci) +K 0 (ci) is su¢ ciently low. (LL) is more and more likely

to be binding as ci diverges from bc:
Lemma 5 Under Assumption 1 - 3, there exists (at most) one cost value ci1 2
(c; ci2) (resp. ci4 2 (ci3; c)) such that, at the solution to (�) ; (PC) is slack 8ci 2
[c; ci1) (resp. 8ci 2 (ci4; c]) and binding 8ci 2 [ci1; ci2] ; (resp. 8ci 2 [ci3; ci4]): When
no such cost value exists, (PC) is slack 8ci 2 [c; ci2) (resp. 8ci 2 (ci3; c]):

At the solution to (�) under tight limited liability, not only P enforces FB for

all types in [ci2; ci3] : She is also able to extract all surplus from some types below

ci2 and some types above ci36. In Appendix, we show that the range of types below

ci2 (resp. above ci3) from which surplus is fully retained spans to the whole set

[c; ci2] (resp. [ci3; c]) if the likelihood that the highest (resp. lowest) possible value

of cj be drawn, conditional of ci taking that same value, raises enough with ci; i.e.

if df(cjci )
dci

���
c
(resp. df(cjci )

dci

���
c
) is su¢ ciently large (resp. small). In the converse case,

surplus extraction is feasible only for su¢ ciently high (resp. low) cost values. All

remaining types are assigned a positive interim payo¤ (i.e. an information rent).

The outcome above compares with the SB solution in Gary-Bobo and Spiegel

[4]. They show that a su¢ cient condition for the agent�s participation constraint to

hold as an equality for the least e¢ cient type and strictly for all other types is that

6Although surplus is retained, FB is not implemented for these types because quantities are
distorted away from the e¢ cient level, as will become clear in the sequel of the analysis.
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the derivative of the conditional likelihood function of the highest possible signal

be small enough7. In our framework, a milder condition is required on the rate

of change of the conditional f: Indeed, this is only relevant at the extreme values

of ci; as previously explained. Moreover, the possibility that (PC) be slack for all

types but one is ruled out, independently of the magnitude of that rate of change.

The divergence of our �nding from that of Gary-Bobo and Spiegel [4] is due to the

presence of �xed costs that decrease with type, which weakens the incentives to

cheat of types su¢ ciently close to bc and thus facilitates surplus extraction. Yet, the
properties of the function f; jointly with those of the function K; determine how

wide is the range of types that get no rent. On one side, all else equal, P retains

surplus more easily when the probability of drawing the highest (resp. lowest) value

for cj increases (resp. decreases) much with ci; i.e. when agents�types are especially

informative signals. On the other side, P is more likely to induce truthtelling at zero

rent when the �xed cost function is less concave8. This is in line with our previous

conclusion that cost convexity facilitates P�s task, which will be further con�rmed

in Proposition 3 below.

Suppose the aforementioned requirements about the conditional likelihood are

met indeed, so that the cost values ci1 and ci4 do exist. We shall now see how

the SB output is characterized in this situation. Consider that the incentive to

overstate (resp. understate) type that an agent with ci < bc (resp. ci > bc) would
display if he were to receive the sole �xed payment to produce the FB quantity gets

increasingly more intense as ci approaches c (resp. c): To remove the incentive to

mimic by means of the lottery, while keeping output at the FB level, P would need to

progressively increase the wedge between rewards and losses as ci moves away from bc:
Nevertheless, (LL) imposes a bound on how large losses can be set, for FB does not

attain when ci =2 [ci2; ci3] : Without quantity distortions, P could solicit information
revelation only by raising the reward su¢ ciently, which would yield an information

rent to agents. This would be too costly though. The optimal strategy is thus to

reduce the rent by �xing output away from the e¢ cient level. For types with weak

incentives to cheat, namely those in [ci1; ci2) and (ci3; ci4] ; P distorts output till all

surplus is extracted. This further clari�es why, over these cost ranges, participation

constraints are saturated, as we said above. For types with more intense incentives

to misreport, namely those in [c; ci1] and [ci4; c] ; P distorts output to contain the

rent, but it would be too costly to remove the latter entirely.

7Compare page 5 of the technical appendix in Gary-Bobo and Spiegel [4].
8One can check that the more (resp. less) negative K 0 is, the higher df(cjci )

dci

���
ci=c

(resp. the

lower df(cjci )
dci

���
ci=c

) is to be for (PC) to be binding.
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The whole SB output pro�le and the thresholds of the relevant cost ranges will

be characterized in a moment. Before proceeding, it is however useful to make the

following standard assumption.

Assumption 4 The conditional likelihood and cumulative distribution function sat-
isfy the following properties:

d

dci

�
F (ci jc)
f (ci jc)

�
� 0; 8ci 2 [c; c] ; 8i 2 f1; 2g (13)

d

dci

�
1� F (ci jc)
f (ci jc)

�
� 0; 8ci 2 [c; c] ; 8i 2 f1; 2g : (14)

This assumption states the monotonicity of the conditional hazard rates F (cijc )
f(cijc )

and 1�F (cijc )
f(cijc ) with respect to ci: According to (13), once types between c and ci have

been drawn, it becomes more and more likely that a less e¢ cient type is drawn for

Ai as ci raises, provided that the highest marginal cost is drawn for Aj: According

to (14), once types between ci and c have been drawn, it is less and less likely that

a less e¢ cient type be drawn for Ai as ci raises, provided that the lowest marginal

cost is drawn for Aj:

In the following lemma, roman numbers are appended to denote SB quantities

and payo¤s over the �ve relevant cost ranges.

Lemma 6 Suppose condition (7) does not hold. Under Assumption 1 - 4, at the
solution to (�); quantities are characterized as follows:

S 0
�
qIi (ci)

�
= ci + (1� �)

F (ci jc)
f (ci jc)

; 8ci 2 [c; ci1] (15)

qIIi (ci) =
df (c jci ) =dci
f (c jci )

L�K 0 (ci) ; 8ci 2 [ci1; ci2] (16)

qIIIi (ci) = qfbi (ci) ; 8ci 2 [ci2; ci3] (17)

qIVi (ci) =
df (c jci ) =dci
f (c jci )

L�K 0 (ci) ; 8ci 2 [ci3; ci4] (18)

S 0
�
qVi (ci)

�
= ci � (1� �)

1� F (ci jc)
f (ci jc)

; 8ci 2 [ci4; c] : (19)
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Moreover, interim rents are given by

Ecj
�
�Ii (ci; cj)

�
= f (c jci )

R ci1
ci

qIi (yi)+K
0(yi)

f(cjyi ) dyi �
h
1� f(cjci )

f(cjci1 )

i
L;

8ci 2 [c; ci1]
(20)

Ecj
�
�ki (ci; cj)

�
= 0; 8ci 2 [ci1; ci2] ; [ci2; ci3] ; [ci3; ci4] ;

8k 2 fII; III; IV g
(21)

Ecj
�
�Vi (ci; cj)

�
= �f (c jci )

R ci
ci4

qVi (yi)+K
0(yi)

f(cjyi ) dyi �
h
1� f(cjci )

f(cjci4 )

i
L;

8ci 2 [ci4; c] :
(22)

To begin with, (17) con�rms that output is still e¢ ciently set as long as ci 2
[ci2; ci3] : According to (15) and (19), the same occurs at both the lowest and the

highest marginal cost realization. (15) further highlights that output is downward

distorted for all types in (c; ci1] ; which allows to contain the rent in (20). Moreover,

under the �rst part of Assumption 4, qIi decreases with ci all over this set. Observe

that the SB quantity solution in Gary-Bobo and Spiegel [4] is characterized precisely

as in (15) for all possible agent�s types. This occurs because, in their context, as in

any standard adverse selection problem, the agent displays a systematic incentive to

overstate type. (19) further evidences that output is upward distorted for all types

in [ci4; c) ; which helps limit the rent in (22). Under the second part of Assumption

4, also qVi decreases with type 8ci 2 [ci4; c) : Lastly, (16) and (18) de�ne how output
is downward and upward distorted in the second and fourth region respectively, just

enough to fully extract surplus in an incentive-compatible way.

We now de�ne the thresholds of the relevant cost ranges, which we have only

mentioned in the lemmas above but not yet characterized.

Lemma 7 Suppose condition (7) does not hold. Under Assumption 1 - 4, at the
solution to (�); the cost values ci1; ci2; ci3 and ci4; are de�ned as follows:

qIi (ci1) +K 0 (ci1) =
df (c jci1 ) =dci1

f (c jci1 )
L (23)

qIIi (ci2) = qfbi (ci2) (24)

qIVi (ci3) = qfbi (ci3) (25)

qVi (ci4) +K 0 (ci4) =
df (c jci4 ) =dci4

f (c jci4 )
L: (26)

Interpreting Lemma 7 together with the results previously presented, it should

be clear that ci1 is the cost value at which P retains all surplus from Ai by su¢ ciently

de�ating output qIi below the FB level, ci2 is the value at which P retains all surplus

by keeping output qIIi at the FB level and similarly for ci3 and ci4:
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Figure 1: The FB output pro�le (qfbi ; dotted line) and the output pro�le in the SB contract with
tight limited liability for L > 0 (qsbi(L); thick line) and L = 0 (q

sb
i(0); dashed line).

A graphical illustration of the full pro�le of quantities is provided in Figure 1

with regards to both FB implementation and the SB contract de�ned by (15) to

(19). The graph evidences that the set of cost values around bc for which FB is still
enforced under tight limited liability enlarges as L raises and would collapse onto

the singleton fbcg in the extreme case in which L = 0: The graph further shows

that the SB quantity decreases with ci all over the support, i.e.
dqki (ci)

dci
� 0 8k 2

fI; II; III; IV; V g ; 8ci 2 [c; c] ; with a rate of decrease that is speci�c to each cost
interval9. In particular, it is dq

I
i (ci)

dci
<

dqfbi (ci)

dci
<

dqIIi (ci)

dci
and dqVi (ci)

dci
<

dqfbi (ci)

dci
<

dqIVi (ci)

dci
.

The following proposition lists the conditions under which the SB solution pre-

viously characterized is globally incentive compatible.

Proposition 3 Suppose condition (7) does not hold. Under Assumption 1 - 4, the
quantity pro�le (15) - (19) is implemented as the solution to (�) if

dqIi (ci)

dci
� �

�
qIi (ci) +K 0 (ci)

� df (c jci ) =dci
f (c jci )

; 8ci 2 [c; ci1] (27)

dqVi (ci)

dci
� �

�
qVi (ci) +K 0 (ci)

� df (c jci ) =dci
f (c jci )

; 8ci 2 [ci4; c] (28)

K" (ci) � d2f (cjr (ci) jci ) =dc2i
f (cjr (ci) jci )

L; 8ci 2 [c; c] ; (29)

with cjr (ci) = c for ci < bc and cjr (ci) = c for ci < bc:
We have previously explained that, under Assumption 4, quantities qIi and q

V
i

decrease with type. Proposition 3 further evidence that, for the contract presented
9That (16) and (18) decrease with ci is ensured by condition (29) in Proposition 3 below.
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in Lemma 6 to be globally incentive compatible, it su¢ ces that those quantities

decrease su¢ ciently fast over the respective cost ranges (see Figure 1 again). Ac-

cording to condition (27) and (28), how fast qIi and q
V
i should decrease depends on

the rate of change of the conditional likelihood that is relevant in the concerned

region. To illustrate why this is the case, let us focus on (27), keeping in mind that

analogous reasoning applies to (28), mutatis mutandis. Take ci 2 [c; ci1) : As the
report ri is raised above the true type ci; under Assumption 2, the probability of

reward increases. Since the loss that Ai might bear equals �L whatever the report,
over-reporting yields a higher interim payo¤, as compared to truthtelling, unless

the quantity is diminished su¢ ciently. The incentive to over-report is removed if

qIi (ci) decreases as fast as (27) dictates. Perfectly analogous to (27) would be the

su¢ cient condition for global incentive compatibility in Gary-Bobo and Spiegel [4]

if, in their model, the marginal cost were assumed to be constant in type, as it is in

ours, rather than strictly increasing and convex10.

Condition (29) tells that the contract described in Lemma 4 - 6 is optimal if,

for all possible types, the curvature of the �xed cost function does not fall below

some given bound that depends on both the conditional likelihood and L: In fact,

(29) is the counterpart of (12) in the FB framework previously explored and can

be interpreted in a similar fashion, mutatis mutandis. Yet, (29) is more requiring

as compared to (12). This further re�ects the circumstance that, all else equal,

it is harder to induce information release when the limits on agents� liability are

stringent.

Corollary 2 Take L = 0 and K" = 0: Suppose condition (7) does not hold, whereas
(27) and (28) are satis�ed. At the solution to (�) ; qsbi (ci) = qfbi (bc) ; 8ci 2 [ci1; ci4] :
The corollary refers to the speci�c situation in which agents can bear no de�cit

ex post and �xed costs are linear in type. In that case, the range of types for which

FB is enforced collapses onto the singleton fbcg : To see this, recall that ci2 and ci3 are
de�ned by qIIi (ci2) = qfbi (ci2) and q

II
i (ci3) = qfbi (ci3) respectively. Moreover, with

L = 0; qIIi (ci) = �K 0 (ci) and qIVi (ci) = �K 0 (ci) : Remembering also the de�nition

of bc; it is immediate to conclude that ci2 � bc � ci3 when L = 0: Further observe that

quantities qIIi (ci) and q
IV
i (ci) are constant over types when so is K 0 (ci) : Hence, all

types within the set [ci1; ci4] ; from which surplus is entirely extracted, are required

to produce the same amount of output, i.e. the optimal contract entails pooling at

qfbi (bc) in a neighborhood of bc:
10Compare the inequality at the end of page 5 in the technical appendix of Gary-Bobo and

Spiegel [4] with (71) in the proof of (27) in our appendix.
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The outcome in Corollary 2 is reminiscent of that Maggi and Rodriguez-Clare [8]

�nd in a single-agent setting. They characterize the optimal contract in the presence

of countervailing incentives for di¤erent possible shapes of the agent�s reservation

utility. They show that, when the reservation utility is linear in type, the contract

entails pooling of quantities over some interval of types that earn zero rents11. The

case of K" = 0 in our model is the counterpart for the linear reservation utility in

Maggi and Rodriguez-Clare [8]. Corollary 2 evidences that, when the case ofK" = 0

arises, the optimal contract exhibits analogous features (namely, pooling and no rent

in a neighborhood of bc) in the multi-agent framework as soon as agents cannot be
punished ex post. This is explained by considering that having L = 0 with more than

one agent is tantamount to assuming that agents are to break even ex post (rather

than only at interim), while ex post and interim participation are equivalent in the

single-agent setting without correlated information. Observe however that, despite

the analogy in terms of structure, the optimal multi-agent contract is not simply

twice a replica of the single-agent contract. Indeed, improvements are available,

as usual with correlated types. First, the range of types for which bunching arises

is less wide. Second, the quantity distortions induced for low and high types are

smaller. Third, the expected rents that accrue to those same types are lower than

the rents P assigns when she deals with a single agent.

4.1 "Very concave" �xed costs

As previously said, condition (12) in Proposition 2 is taken to be satis�ed all

along the analysis. Even under this assumption, it is not necessarily the case that

condition (29) in Proposition 3 is satis�ed in turn. In what follows, we consider the

situation in which (29) is violated. The following proposition describes the optimal

contract under this circumstance.

Proposition 4 Suppose neither condition (7) nor condition (29) holds. Under As-
sumption 1 - 4, the quantity solution to (�) is given by

qsbi (ci) = qIi (ci) ; 8ci 2
�
c; c�i

�
qsbi (ci) = qfbi (bc) ; 8ci 2

�
c�i ; c

+
i

�
qsbi (ci) = qVi (ci) ; 8ci 2

�
c+i ; c

�
;

11An environment with reservation utility linear in type is analysed also in other works, such as
that of Brainard and Martimort [1], with analogous result.
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Figure 2: The FB output pro�le (qfbi ; dotted line), the output pro�le in the SBmulti-agent contract
(qsbi(M); thick line) and the output pro�le in the single-agent contract (q

sb
(S); dashed line) with K

"very" concave.

where c�i and c
+
i are such that

qIi
�
c�i
�
= qfbi (bc)

qVi
�
c+i
�
= qfbi (bc) :

Moreover, (PC) is binding only for type bc:
The contract described in the proposition entails a pooling equilibrium in a

neighborhood of bc: This is the sole type from which P is able to retain all surplus

when (29) is violated. The contract is reminiscent of that characterized by Lewis

and Sappington [6]. They study countervailing incentives in a single-agent setting

without correlated signals, focusing on the case in which the agent�s �xed cost

function is concave in type12. Yet, in our environment, pooling concerns a smaller

range of types, a bene�t that follows from the presence of information correlation.

This is shown by the graph in Figure 2, which compares the optimal output pro�le

in the two situations.

Having (29) violated means that, as long as L > 0; �xed costs must be su¢ ciently

concave in type for the contract illustrated in Proposition 4 to be SB optimal. By

contrast, the single-agent optimal contract exhibits the structure aforementioned

even with slightly concave �xed costs. This shows that, whenever losses can be

in�icted to agents ex post, the presence of information correlation yields an additional

bene�t. That is, it also enlarges the class of environments in which separating

12Maggi and Rodriguez-Clare [8] obtain the same outcome in the equivalent situation in which
the agent�s reservation utility is concave in type.
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equilibria arise.

Further observe that the structure of the contract in Proposition 4 is similar

to that in Corollary 2, except that, in the former, the range of types with no rent

degenerates onto a singleton. This follows from the circumstance that, as already

illustrated, incentives to over/under-report are especially strong when K is very

concave. In that case, information release is not induced unless even the types

around bc are given up a rent. To interpret this point in a uni�ed way with the rest of
our SB results, it is useful to recall that, in single-agent relationships, the linear �xed

costs (or, equivalently, linear reservation utility) case with pooling and no rent for

some type range can be seen as a "knife-edge" situation: pooling is removed as soon

as K becomes convex; all types but one obtain a rent as soon as K becomes concave

(compare Maggi and Rodriguez-Clare [8]). From our analysis, it emerges that the

linear case remains a "knife-edge" situation in multi-agent hierarchies insofar as ex

post de�cits are unfeasible (recall the explanation after Corollary 2). In correlated

information frameworks, the relevant "knife-edge" situation becomes condition (29)

as soon as agents can be exposed to (bounded) losses under interim participation.

5 Concluding remarks

In this article, we have studied centralized contracting between a principal and

two agents who have countervailing incentives to misreport their types, which are

correlated. We have focused on the realistic case in which agents are limitedly liable.

As an example of the situations we have represented, one may consider centralized

regulation of utilities such as electricity and water and sewage.

Our analysis predicts that, as long as agents�pockets are su¢ ciently deep, the

�rst-best outcome is implemented by the incentive scheme that yields the smallest

feasible ex post loss to agents (the Maxmin scheme), if the latter�s �xed costs are

either linear or convex in type. However, the �rst-best outcome is unfeasible if

the agents�technology does not display this property, unless the principal o¤ers a

contract that imposes higher de�cit to agents. We show that, in the presence of

countervailing incentives, the contract that yields the highest sustainable loss to

agents expands at maximum the range of cost functions that support �rst best.

Our analysis further predicts that, if the agents��xed costs are not very concave

in type (so that incentives to over and under-report are not too intense), the optimal

incentive scheme is a separating contract under which, thanks to the presence of

countervailing incentives, the �rst-best outcome can still be e¤ected for some range

of types even when agents do not have especially deep pockets. Otherwise, the

optimal contract entails pooling of quantities. However, the concavity threshold
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between separating and pooling contracts does depend on the agents�liability. As

the latter raises (though not to the point that �rst best can be enforced for any type),

increasingly more concave cost functions, i.e. a wider class of possible technologies,

sustain the separating contract.

The results of our study provide further scope for resorting to centralized incen-

tive schemes in correlated information settings in which agents display countervailing

incentives and can be exposed to some de�cit ex post. This seems to be especially

relevant with regards to contexts, such as energy sectors, in which there is a rich

variety of technologies that can be utilized for activity. Our �ndings further suggest

that, when the characteristics of the technologies agents use make their incentives

to lie especially strong, improving contractual e¢ ciency may require to transfer as

much uncertainty as feasible to agents and, hence, to raise their losses. This con-

trasts with the usual attitude of regulators not to aggravate the �nancial burden of

the regulated �rms.

All along our work, we have taken agents to behave non-cooperatively. The

analysis could be extended to assess how collusion would a¤ect the principal�s strat-

egy and achievements. This would be useful because, in some cases, collusion rep-

resents a concern for regulators in the industrial contexts our model stylizes.
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A First-best implementation

A.1 Local incentive constraint (LIC)
Let e�i (ri; cj) the ex post pro�t of Ai when he has type ci and reports ri: His

interim pro�t is written

Ecj [e�i (ri; cj)] � Z c

c

e�i (ri; cj) f (cj jci ) dcj
=

Z c

c

fti (ri; cj)� ciqi (ri; cj)�K (ci)g f (cj jci ) dcj: (30)

From (30) ; the �rst order-condition of A0is programme, evaluated at ri = ci; is given
by Z c

c

�
dti (ci; cj)

dci
� ci

dqi (ci; cj)

dci

�
f (cj jci ) dcj = 0: (31)

From (2a) ; we can compute

dti (ci; cj)

dci
=
d�i (ci; cj)

dci
+ ci

dqi (ci; cj)

dci
+ qi (ci; cj) +K 0 (ci) : (32)

Replacing (32) into (31), we haveZ c

c

�
d�i (ci; cj)

dci
+ [qi (ci; cj) +K 0 (ci)]

�
f (cj jci ) dcj = 0: (33)

Since (PC) is binding for all ci at FB, so thatZ c

c

�i (ci; cj) f (cj jci ) dcj = 0; (34)

both Ecj [�i (ci; cj)] and dEcj [�i (ci; cj)] =dci are equal to zero, so that we obtain the
local incentive constraint (LIC).

A.2 Proof of Lemma 1
We develop the proof in four steps. We begin by rewriting the local incentive

constraint (LIC) in a way that takes into acount the binding (PC). We use it to
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show that, when this constraint is satis�ed, all rewards are equal and all losses are
equal under the Maxmin scheme. We then determine the ex post pro�ts. We lastly
prove that it is optimal to reward each agent for only one type cj and let him bear
a loss for all other types.

A.2.1 Local incentive compatibility rewritten

Using (LIC) in (33) ; together with qi (ci; cj) = qfbi (ci) ; we obtain

qfbi (ci) +K 0 (ci) =

Z c

c

�i (ci; cj)
df (cj jci )

dci
dcj (35)

A.2.2 All rewards are equal and all losses are equal under the Maxmin
scheme

Take three di¤erent feasible types of Aj, namely cj1; cj2; cj3 2 [c; c] and suppose
that �i (ci; cj1) > �i (ci; cj2) > �i (ci; cj3) ; with �i (ci; cj3) the highest loss at the
solution to (Maxmin). Because (PC) is binding at FB implementation, we can writeZ c

c

�i (ci; cj)
df (cj jci )

dci
dcj

=

Z c

c

�i (ci; cj)
df (cj jci )

dci
dcj �

df (cj1 jci ) =dci
f (cj1 jci )

Z c

c

�i (ci; cj) f (cj jci ) dcj

=

Z c

c

�i (ci; cj) f (cj jci )  (cj; cj1) dcj;

with

 (cj; cj1) �
df(cj jci )
dci

f (cj jci )
�

df(cj1jci )
dci

f (cj1 jci )
:

We use this expression to rewrite (35) as

qfbi (ci) +K 0 (ci) =

Z c

c

�i (ci; cj) f (cj jci )  (cj; cj1) dcj: (36)

The left-hand side of (36) (LHS hereafter) is independent of �i (ci; cj1) ; �i (ci; cj2)
and �i (ci; cj3). The right-hand side of (36) (RHS hereafter) is independent of
�i (ci; cj1) because  (cj1; cj1) = 0: Assume that �i (ci; cj3) is raised by some " > 0:
Keeping all other pro�ts constant, �i (ci; cj2) must vary by some amount ��i (ci; cj2)
for the RHS of (36) to remain unchanged. Thus, it is

"f (cj3 jci )  (cj3; cj1) = ���i (ci; cj2) f (cj2 jci )  (cj; cj2)

or, equivalently,

��i (ci; cj2) = �"
f (cj3 jci )  (cj3; cj1)
f (cj2 jci )  (cj; cj2)

: (37)
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At the same time, to ensure that (PC) is binding, �i (ci; cj1) must also change by
some amount ��i (ci; cj1), so thatZ c

c

�i (ci; cj) f (cj jci ) dcj + "f (cj3 jci )

+��i (ci; cj2) f (cj2 jci ) + ��i (ci; cj1) f (cj1 jci ) = 0:

From this equality and (34),

"f (cj3 jci ) + ��i (ci; cj2) f (cj2 jci ) + ��i (ci; cj1) f (cj1 jci ) = 0:

Substituting ��i (ci; cj2) from (37) in the above expression we then �nd

��i (ci; cj1) = �"
f (cj3 jci )
f (cj1 jci )

�
1�  (cj3; cj1)

 (cj2; cj1)

�
: (38)

From (37) and (38) ; we deduce that if we choose " > 0 to be su¢ ciently small,
�i (ci; cj3) can be raised without changing the initial ranking of the three pro�ts.
This result contradicts the assumption that �i (ci; cj3) is the biggest loss at the
solution to (Maxmin). Hence, it must be the case that either �i (ci; cj1) = �i (ci; cj2)
or �i (ci; cj2) = �i (ci; cj3).

A.2.3 Ex post pro�ts

Using the previous result we denote the ex post pro�ts assigned to Ai as �i;r
(reward) and �i;p (punishment). We further de�ne a function p (cj jci ) such that
p (cj jci ) = f (cj jci ) if Ai is rewarded and p (cj jci ) = 0 otherwise. Using this
notation, (34) is rewritten

�i;p = �
R c
c
p (cj jci ) dcj

1�
R c
c
p (cj jci ) dcj

�i;r: (39)

Using the above notations we also rewrite (35) as

qfbi (ci) +K 0 (ci) = �i;r

Z c

c

dp (cj jci )
dci

dcj � �i;p

Z c

c

dp (cj jci )
dci

dcj: (40)

From (39) and (40) ; we obtain the ex post pro�ts

�i;r =
h
qfbi (ci) +K 0 (ci)

i 1� R c
c
p (cj jci ) dcjR c

c

dp(cj jci )
dci

dcj
(41)

�i;p =
h
qfbi (ci) +K 0 (ci)

i � R c
c
p (cj jci ) dcjR c

c

dp(cj jci )
dci

dcj
: (42)
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A.2.4 One reward is optimal

At the solution to (Maxmin), the punishment �i;p takes the maximum feasible

value. This requires that the ratio
R c
c
p (cj jci ) dcj

.R c
c

dp(cj jci )
dci

dcj be minimized with
respect to cj. The ratio depends on the number of rewards. Assume that, starting
from a certain number of rewards, a new one is added for some realization ecj: For
this to enhance P�s problem, it must be the case that the di¤erence

D =

R c
c
p (cj jci ) dcj + f (ecj jci )R c
c

dp(cj jci )
dci

dcj +
df(ecj jci )
dci

�
R c
c
p (cj jci ) dcjR c
c

dp(cj jci )
dci

dcj

=
f (ecj jci ) R cc dp(cj jci )

dci
dcj � df(ecj jci )

dci

R c
c
p (cj jci ) dcjhR c

c

dp(cj jci )
dci

dcj +
df(ecj jci )
dci

i R c
c

dp(cj jci )
dci

dcj

be negative. Notice that, from (41) and (42) ; reward states must be such that�R c
c

dp(cj jci )
dci

dcj

�
> 0: Thus, for the new reward to be conveniently added for some

realization ecj; one needs to have �R cc dp(cj jci )
dci

dcj +
df(ecj jci )
dci

�
> 0: For this reason, the

sign of D coincides with the sign of its numerator, which is rewritten

N (D) =
df (ecj jci )

dci

Z c

c

dp (cj jci )
dci

dcj

"
f (ecj jci )
df(ecj jci )
dci

�
R c
c
p (cj jci ) dcjR c
c

dp(cj jci )
dci

dcj

#
:

If (df (ecj jci ) =dci) < 0; then Ai cannot be rewarded when Aj has type ecj because
N (D) > 0: If (df (ecj jci ) =dci) > 0; then Ai is rewarded if and only if

f (ecj jci )
df(ecj jci )
dci

�
R c
c
p (cj jci ) dcjR c
c

dp(cj jci )
dci

dcj
< 0;

in which case N (D) < 0 and so D < 0: For some given ci; take cjr (ci) to be the type
of Aj for which the ratio

dp(cj jci )=dci
p(cj jci ) is highest. Then,  (ecj; cjr (ci)) < 0; 8ecj 2 [c; c] :

Using this in the above condition, it follows that it is optimal to assign only one
reward, when Aj has type cjr (ci) ; and a loss when Aj has any type ecj 6= cjr (ci) :

A.3 Determination of (3) and (4)
From the de�nition of p (cj jci ) in the proof of Lemma 1 and from Lemma 1,

it is
R c
c
p (cj jci ) dcj = f (cjr (ci) jci ) : Using this in (41) and (42) ; (3) and (4) are

determined.

A.4 Proof of Lemma 2
Suppose cjr (ci) = c; 8ci 2 [c; c] ; with c some constant from [c; c] : Take also

df (c jci ) =dci > 0. For ci < bc; the punishment is as from (4) ; i.e. �fbi;p (ci) < 0; with
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cjr (ci) = c: Similarly, for ci > bc; the punishment is as from (3) ; i.e. �fbi;r (ci) < 0;
with cjr (ci) = c: Furthermore, the Maxmin scheme must be such that c maximizes
both �fbi;p (ci) for ci < bc and �fbi;r (ci) for ci > bc at once. The former requires that
d
dci

�
f(cj jci )
f(cjci )

�
< 0; 8cj 6= c; the latter that d

dci

�
1�f(cj jci )
f(cjci )

�
> 0; 8cj 6= c: Assume

d
dci

�
f(cj jci )
f(cjci )

�
< 0 holds true. Together with df (c jci ) =dci > 0; this involves that

d
dci

�
1�f(cj jci )
f(cjci )

�
� 0; contradicting the hypothesis that cjr (ci) = c.

The proof proceeds similarly for df (c jci ) =dci < 0:

A.5 Proof of Proposition 1
The pro�ts (3) and (4) are such that the local incentive constraint (35) is satis�ed

(recall the proof of Lemma 1 and 2). In what follows, we �rst �nd the condition for
global incentive compatibility and then provide the proof of Proposition 1.

A.5.1 Global incentive compatibility

The interim pro�t when Ai is of type ci and reports ri is written

Ecj [e�i (ri; cj)] � Z c

c

e�i (ri; cj) f (cj jci ) dcj
= qfbi (ri) (ri � ci) +K (ri)�K (ci) (43)

+

Z c

c

�i (ri; cj) f (cj jci ) dcj

= qfbi (ri) (ri � ci) +K (ri)�K (ci) +

Z c

c

�fbi;p (ri) f (cj jci ) dcj

+
h
�fbi;r (ri)� �fbi;p (ri)

i
f (cjr (ri) jci )

Substituting the values from (3) and (4), we rewrite (43) as

Ecj [e�i (ri; cj)] = Z ri

ci

�h
qfbi (ri) +K 0 (ri)

i �
1� df (cjr (ri) jx) =dx

df (cjr (ri) jri ) =dri

�
(44)

+K 0(x)�K 0(ri)g dx:

From (44) ; from the condition for global incentive compatibility E [e�i (ri; cj)] � 0
and taking into account that cjr (ri) = c if ri < bc and cjr (ri) = c if ri > bc; we deduce
the following conditions:

K 0(ri)�K 0(ci) �
h
qfbi (ri) +K 0 (ri)

i �
1� df (cjr (ri) jci ) =dci

df (cjr (ri) jri ) =dri

�
, if ri � ci (45)

K 0(ri)�K 0(ci) �
h
qfbi (ri) +K 0 (ri)

i �
1� df (cjr (ri) jci ) =dci

df (cjr (ri) jri ) =dri

�
; if ri � ci:(46)

These conditions are satis�ed if K" (ci) � 0.
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A.5.2 Proposition 1

From (3) and (4) ; �fbi;p (ci; cjr (ri)) < 0 < �fbi;r (ci; cjr (ri)) : Hence, (LL) is satis�ed
as long as h

qfbi (ci) +K 0 (ci)
i f (cjr (ci) jci )
df (cjr (ci) jci ) =dci

� L: (47)

Because (3) and (4) are locally incentive compatible (see proof of Lemma 1 and 2)
and since they belong to the Maxmin scheme, FB is implemented if and only if (47)
is satis�ed, provided that K" (ci) � 0: Moreover, under Assumption (1) and (3),
cjr = c if ci � bc and cjr = c otherwise.

A.6 Proof of Corollary 1
It follows immediately from the global incentive constraints (45) and (46) ; with

qfbi (ri) +K 0 (ri) 6= 0 8ri 2 [c; c].

A.7 Proof of Lemma 3
We hereafter show that the expected value of the lottery,

R c
c
�i (ri; cj) f (cj jci ) dcj;

is minimized (with (LIC), (PC) and (LL) all satis�ed) when P assigns one reward
and losses that are all equal to �L: We proceed as follows. We �rst calculate the
expected value of the lottery with one reward and punishments all equal to �L:
We then calculate the expected value of the lottery with three distinct pro�ts, the
smallest of which equal to �L. We �nally compare the expected value of the lottery
in the two cases and show that it is higher in the latter case.
As a �rst step, assume that, when Ai is of type ci and reports ri; he receives a

reward �i;r (ri) for cj = cjr (ri) and a loss �i;p (ri) = �L for all other values of cj: P
seeks to minimizeZ c

c

�i (ri; cj) f (cj jci ) dcj = �i;p (ri) + [�i;r (ri)� �i;p (ri)] f (cjr (ri) jci ) : (48)

With (PC) binding for type ri; we haveZ c

c

�i (ri; cj) f (cj jri ) dcj = 0;

which is rewritten

�i;r (ri) = �
1� f (cjr (ri) jri )
f (cjr (ri) jri )

�i;p (ri) :

Replacing this expression into (48) together with �i;p (ci) = �L; we getZ c

c

�i (ri; cj) f (cj jci ) dcj = �L
�
1� f (cjr (ri) jci )

f (cjr (ri) jri )

�
� 
: (49)

Assume next that P implements FB with three distinct pro�ts �i;p (ci) ; �1 (ci)
and �i;r (ci) ; such that �i;p (ci) = �L and �i;p (ci) < �1 (ci) < �i;r (ci) : Pro�t �1 (ci)
is assigned when cj = cj1 and �i;r (ci) when cj = cjr (ci). The expected value of the
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lottery becomesZ c

c

�i (ri; cj) f (cj jci ) dcj = [�i;r (ri)� �i;p (ri)] f (cjr (ri) jci ) (50)

+�i;p (ri) + [�1 (ri)� �i;p (ri)] f (cj1 jci ) ;

whereas the binding (PC) is now written

�i;r (ri)� �i;p (ri) = �
�i;p (ri) + [�1 (ri)� �i;p (ri)] f (cj1 jri )

f (cjr (ri) jri )
:

Replacing this expression into (50) ; together with �i;p (ri) = �L; we obtainZ c

c

�i (ri; cj) f (cj jci ) dcj = �L
�
1� f (cjr (ri) jci )

f (cjr (ri) jri )

�
+ [�1 (ri) + L]

�
1� f (cj1 jri ) f (cjr (ri) jci )

f (cj1 jci ) f (cjr (ri) jri )

�
f (cj1 jci )

� 	 (51)

We are now left with comparing (49) with (51). We calculate

	� 
 = [�1 (ri) + L]

�
�f (cj1 jri ) f (cjr (ri) jci )
f (cj1 jci ) f (cjr (ri) jri )

+ 1

�
f (cj1 jci ) :

From Proposition 2, cjr (ri) = c if ri < bc and cjr (ri) = c if ri > bc: Under
Assumption 3 and because �1 (ri)+L > 0; we have 	�
 > 0: Hence, the expected
value of the lottery is higher with any pro�t triplet f�i;p (ci) ; �1 (ci) ; �i;r (ci)g such
that �i;p (ci) = �L and �i;p (ci) < �1 (ci) < �i;r (ci) than it is with the pro�t pair
f�i;p (ci) ; �i;r (ci)g such that �i;p (ci) = �L.

A.8 Proof of Proposition 2
Since �i;p (ci) = �L and (PC) is binding, the reward is given by �i;r (ri) =

1�f(cjr(ri)jci )
f(cjr(ri)jci ) L; with cjr (ri) the type cj for which Ai is rewarded whenever he reports
ri: Then, the payo¤ Ecj [e�i (ri; cj)] described by (44) is rewritten

Ecj [e�i (ri; cj)] = qfbi (ri) (ri � ci) +K (ri)�K (ci)

+

Z c

c

�fbi;p (ri; cjr (ri)) f (cj jci ) dcj

+
h
�fbi;r (ri; cjr (ri))� �fbi;p (ri; cjr (ri))

i
f (cjr (ri) jci )

=

Z ri

ci

�
qfbi (ri) +K 0 (ri)� L

df (cjr (ri) jyi ) =dyi
f (cjr (ri) jri )

+K 0(yi)�K 0(ri)] dyi
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Ecj [e�i (ri; cj)] � 0 for all yi < ri under condition (12) :
To see which value cjr (ri) takes, suppose ci < ri. Under Assumption 3, the ratio

f(cjr(ri)jci )
f(cjr(ri)jri ) in the expression here above is minimized. Hence, (12) is least stringent
with cjr (ri) = c when ri < bc and cjr (ri) = c when ri > bc. The same reasoning
applies for ci > ri:

B The optimal contract with tight limited liabil-

ity

B.1 Proof of Lemma 4
From the de�nition of bc in Lemma 2, (7) holds for ci = bc; 8L � 0: Take now

ci < bc and suppose that (7) is violated for ci, so that
qfbi (ci) +K 0 (ci) > L

df (c jci ) =dci
f (c jci )

: (52)

(i) Suppose that

dqfbi (ci)

dci
+K" (ci) <

L

f (c jci )

"
d2f (c jci )

dc2i
� (df (c jci ) =dci)

2

f (c jci )

#
: (53)

meaning that, as ci raises, the LHS of (52) (which is negative by Assumption 1)
decreases faster than the RHS. Since (52) does not hold for ci = bc; there is at
most one value ci2 2 [c;bc] such that (52) does not hold if ci 2 [c; ci2) and holds if
ci 2 [ci2;bc] : This value exists if (52) holds for ci = c:
(ii) Next suppose that (53) is not satis�ed, so that, as ci raises, the LHS of (52)

decreases less fast than the RHS. Hence, if (52) does not hold for ci = c; then it
does not hold for any ci 2 [c;bc] ; in which case there is no ci 2 [c;bc] for which (7) is
violated. If (52) holds for ci = c; then it must hold for any ci 2 [c;bc] ; involving that
(7) is violated for all types within this interval. This contradicts the de�nition of bc;
under which (7) is satis�ed for ci = bc. Therefore, (52) does not hold for ci = c; so
that (7) is satis�ed for all ci 2 [c;bc] :
Considering (i) and (ii) altogether, we deduce that there exists at most one

subset [c; ci2) � [c;bc] over which (7) is violated, with ci2 2 [c;bc] : This value exists
whenever (7) is violated for ci = c:
A similar reasoning applies when ci > bc; so that there exists at most one subset

(ci3; c] � [bc; c] ; with ci3 2 [bc; c] ; for which (7) is violated.
B.2 Proof of Lemma 5
From the proof of Lemma 4, for any ci 2 [c;bc] to which a rent accrues, the SB

quantity is given by qIi (ci) as de�ned by (15) : For any ci 2 [c;bc] to which no rent
accrues, the SB quantity is given by qIIi (ci) as de�ned by (16) : A rent is left to type
ci 2 [c;bc] if and only if

qIi (ci) +K 0 (ci) > L
df (c jci ) =dci
f (c jci )

: (54)
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For the types for which (54) is violated, P does better by choosing the quantity
qIIi (ci) � qIi (ci) so as to extract all surplus. Using (54) together with the condition

K" (ci) < �dqIi (ci)

dci
(from Assumption 1 and dqIi (ci)

dci
<

dqfbi (ci)

dci
); the sequel of the proof

proceeds identically to that of Lemma 4 once qfbi (ci) is replaced with q
I
i (ci) ; ci2

with ci1; bc with ci2 and (52) with (54). The cost value ci1 exists whenever (54) is
satis�ed for ci = c; i.e. whenever a rent is given up to type c.
The procedure is similar for ci 2 [bc; c] :

B.3 Proof of Lemma 6

B.3.1 Expected welfare

De�ne

fW (a; b) �
X
i6=j

Z b

a

Z c

c

[V (qi (ci; cj)) + ��i (ci; cj)] f (cj jci ) fi (ci) dcjdci; (55)

so that the objective function in (�) is rewritten

fW =
X
i6=j

hfW (c; ci1) +fW (ci1; ci2) +fW (ci2; ci3) +fW (ci3; ci4) +fW (ci4; c)
i
:

Since the maximization of expected welfare in each cost interval is independent of
that in any other interval, we treat the various intervals separately. We have already
established that, in the situation under scrutiny, FB attains 8ci 2 [ci2; ci3] (Lemma
4) and we shall not come back to this case.

B.3.2 The solution for ci 2 [c; ci1)
We �rst calculate the ex post transfer, then the expected transfer for ci 2 [c; ci1),

namely E [ti (ci) jci < ci1 ] :We �nally replace it into the expression of fW (c; ci1) and
optimize with respect to quantity.

The ex post transfer when ci 2 [c; ci1) It is useful to de�ne ti (ci; cjr (ci)) �
gi (ci) the transfer Ai receives when he is rewarded and ti (ci; cj) � hi (ci; cj) the
transfer he receives when he is punished. For sake of simplicity, hi (ci; cj) is de�ned
for any cj 2 [c; c] ; although in reality hi (ci; cjr (ci)) does not exist (Ai is not actually
punished in state cjr (ci)): Replacing into (31) and rearranging, we get

gi (ci) =

Z c

c

ci
dqi (ci; cj)

dci

f (cj jci )
f (cjr (ci) jci )

dcj

�
Z c

c

dhi (ci; cj)

dci

f (cj jci )
f (cjr (ci) jci )

dcj +
dhi (ci; cjr (ci))

dci
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De�ne cik 2 fci1; ci4g any type ci for which Ecj [�i (cik; cj)] = 0. Integrating all terms
above from ci to cik we obtain

gi (ci) = gi (cik)�
Z cik

ci

Z c

c

yi
dqi (yi; cj)

dyi

f (cj jyi )
f (cjr (ci) jyi )

dcjdyi (56)

+

Z cik

ci

Z c

c

dhi (ci; cj)

dyi

f (cj jyi )
f (cjr (ci) jyi )

dcjdyi � hi (cik; cjr (ci))

+hi (ci; cjr (ci)) :

Integrating by parts the second and the third term in the RHS of (56) ; we can write

gi (ci) = gi (cik)� hi (cik; cjr (ci)) + hi (ci; cjr (ci)) (57)

�
Z c

c

cikqi (cik; cj)
f (cj jcik )

f (cjr (ci) jcik )
dcj +

Z c

c

hi (cik; cj)
f (cj jcik )

f (cjr (ci) jcik )
dcj

+

Z c

c

qi (ci; cj) ci
f (cj jci )

f (cjr (ci) jci )
dcj �

Z c

c

hi (ci; cj)
f (cj jci )

f (cjr (ci) jci )
dcj

+

Z cik

ci

Z c

c

qi (yi; cj)
d

dyi

�
yi

f (cj jyi )
f (cjr (ci) jyi )

�
dcjdyi

�
Z cik

ci

Z c

c

hi (yi; cj)
d

dyi

�
f (cj jyi )

f (cjr (ci) jyi )

�
dcjdyi::

Denote

 (ci; cj) �
f (cj jci )

f (cjr (ci) jci )
; (58)

so that it is  (ci; cj) � f(cj jci )
f(cjci ) if ci < bc and  (ci; cj) � f(cj jci )

f(cjci ) if ci > bc: Rearranging
terms in gi (ci) ; we obtain

gi (ci) =

Z c

c

[hi (cik; cj)� cikqi (cik; cj)] (cik; cj) dcj + gi (cik) (59)

�hi (cik; cjr (ci)) +
Z c

c

qi (ci; cj) ci (ci; cj) dcj

+

Z cik

ci

Z c

c

qi (yi; cj)
d

dyi
[yi (yi; cj)] dcjdyi �

Z c

c

hi (ci; cj) (ci; cj) dcj

�
Z cik

ci

Z c

c

hi (yi; cj)
d (yi; cj)

dyi
dcjdyi + hi (ci; cjr (ci)) :

Using (2a) we can rewriteZ c

c

[hi (cik; cj)� cikqi (cik; cj)] (cik; cj) dcj + ri (cik)� hi (cik; cjr (cik))

=

Z c

c

[�i (cik; cj) +K (cik)] (cik; cj) dcj:
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Replacing into (59) returns

gi (ci) =

Z c

c

[�i (cik; cj) +K (cik)] (cik; cj) dcj �
Z c

c

hi (ci; cj) (ci; cj) dcj

+

Z c

c

qi (ci; cj) ci (ci; cj) dcj + hi (ci; cjr (ci)) (60)

+

Z cik

ci

Z c

c

qi (yi; cj)
d

dyi
[yi (yi; cj)] dcjdyi

�
Z cik

ci

Z c

c

hi (yi; cj)
d (yi; cj)

dyi
dcjdyi:

Using (2a) as well as ti (ci; cj) = h (ci; cj) for cj 6= cjr (ci) and letting �sbi;p (ci; cj) the
punishment, we have �sbi;p (ci; cj) = hi (ci; cj) � [ciqi (ci; cj) +K (ci)] : We use this to
rewrite the expressionZ cik

ci

Z c

c

qi (yi; cj)
d

dyi
[yi (yi; cj)] dcjdyi �

Z cik

ci

Z c

c

hi (yi; cj)
d (yi; cj)

dyi
dcjdyi

=

Z cik

ci

Z c

c

�
qi (yi; cj) (yi; cj) + [yiqi (yi; cj)� hi (yi; cj)]

d (yi; cj)

dyi

�
dcjdyi

=

Z cik

ci

Z c

c

�
qi (yi; cj) (yi; cj)�

�
�sbi;p (yi; cj) +K (yi)

� d (yi; cj)
dyi

�
dcjdyi:

Replacing this into (60) yields the ex post transfer

gi (ci) =

Z c

c

[�i (cik; cj) +K (cik)] (cik; cj) dcj +

Z c

c

qi (ci; cj) ci (ci; cj) dcj

�
�Z c

c

hi (ci; cj) (ci; cj) dcj � hi (ci; cjr (ci))

�
(61)

+

Z cik

ci

Z c

c

qi (yi; cj) (yi; cj)�
�
�sbi;p (yi; cj) +K (yi)

� d (yi; cj)
dyi

dcjdyi:

The expected transfer for ci 2 [c; ci1) Using the notation hi (ci; cj) and gi (ci)
as de�ned in the proof of Lemma 5, the expected transfer of Ai when ci < ci1 is
given by

E [ti (ci) jci < ci1 ] =

Z ci1

c

�Z c

c

hi (ci; cj) f (cj jci ) dcj

+ [gi (ci)� hi (ci; c)] f (c jci )g fi (ci) dcjdci

=

Z ci1

c

�Z c

c

hi (ci; cj) f (cj jci ) dcj � h (ci; c) f (c jci )
�
fi (ci) dci

+

Z ci1

c

gi (ci) f (c jci ) fi (ci) ci:
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Substitute cjr (ci) = c into (61) and then substitute gi (ci) from (61) into the above
expression, with cik = ci1. This yields

E [ti (ci) jci < ci1 ] =

Z ci1

c

��Z c

c

[�i (ci1; cj) +K (ci1)] (ci1; cj)

+

Z c

c

ciqi (ci; cj) (ci; cj) +

Z ci1

c

Z c

c

(qi (yi; cj) (yi; cj)

�
�
�sbi;p (yi; cj) +K (yi)

� d (yi; cj)
dyi

�
dyi

�
dcj

�
f (c jci ) fi (ci) dci:

De�ne

� (ci) �
Z ci

c

f (c jyi ) fi (yi) dyi;8ci 2 [c; ci1) (62)

for any ci 2 [c; ci1). We calculateZ ci1

c

�Z ci1

ci

�Z c

c

(qi (yi; cj) (yi; cj)

�
�
�sbi;p (yi; cj) +K (yi)

� d (yi; cj)
dyi

�
dyi

�
dcj

�
f (c jci ) fi (ci) dci

=

Z ci1

c

�Z c

c

(qi (ci; cj) (ci; cj)

�
�
�sbi;p (yi; cj) +K (yi)

� d (ci; cj)
dci

�
dcj

�
� (ci; c) dci:

We thus �nd

E [ti (ci) jci < ci1 ] =

Z ci1

c

�Z c

c

[[�i (ci1; cj) +K (ci1)] (ci1; cj) (63)

+ciqi (ci; cj) (ci; cj)] dcjg f (c jci ) fi (ci) dci

+

Z ci1

c

�Z c

c

[qi (ci; cj) (ci; cj)

�
�
�sbi;p (yi; cj) +K (yi)

� d (ci; cj)
dci

�
dcj

�
� (ci; c) dci:
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The optimal output for ci 2 [c; ci1) Substituting (63) into (2a) and then (2a)
into the expression of fW (c; ci1) from (55), we rewrite it as follows

fW (c; ci1) =

Z ci1

c

Z c

c

[S (qi (ci; cj))� �ciqi (ci; cj)� �K (ci)] f (cj jci ) fi (ci) dcjdci(64)

� (1� �)

Z ci1

c

�Z c

c

[[�i (ci1; cj) +K (ci1)] (ci1; cj)

+ciqi (ci; cj) (ci; cj)] dcjg f (c jci ) fi (ci) dci

� (1� �)

Z ci1

c

�Z c

c

[qi (ci; cj) (ci; cj)

�
�
�sbi;p (ci; cj) +K (ci)

� d (ci; cj)
dci

�
dcj

�
� (ci; c) dci:

From the de�nition of ci1 (see Lemma 5), E [�i (ci1; cj)] = 0: Also, because fW (c; ci1)
decreases with �sbi;p (ci; cj) ; it is optimal to set the latter at the lowest feasible value,

i.e. �sbi;p (ci; cj) = �L: Replacing intofW (c; ci1) ; the �rst-order condition with respect
to qi; 8ci 2 [c; ci1) ; is given by

[S 0 (qi (ci; cj))� �ci] f (ci; cj)

= (1� �) [ci (ci; cj) f (c jci ) fi (ci) +  (ci; cj)� (ci; c)] :

Denoting qIi (ci) the quantity that satis�es the condition above and using the equality
f (cj jci ) fi (ci) = f (ci; cj) together with (58) and (62) ; we can rewrite

S 0
�
qIi (ci)

�
= �ci + (1� �)

 (ci; cj)

f (ci; cj)
[cif (c jci ) fi (ci) + � (ci; c)]

= ci + (1� �)

R ci
c
f (c jyi ) fi (yi) dyi
f (c jci ) fi (ci)

= ci + (1� �)
F (ci jc)
f (ci jc)

;

with F (ci jc) =
R ci
c f(cjyi )fi(yi)dyiR c
c f(cjci )fi(ci)dci

and f (ci jc) = f(cjci )fi(ci)R c
c f(cjci )fi(ci)dci

.

B.3.3 The solution for ci 2 [ci1; ci2)
From Lemma 5 one has Ecj [�i (ci; cj)] = 0 whenever ci 2 [ci1; ci2). It means that

the functional form of ex post pro�ts �i (ci; cj) is similar to (3) and (4) ; except that
qfbi (ci) is replaced by q

II
i (ci), whose value we need to determine. In particular, the

punishment is

�sbi;p (ci; cj) = �
�
qIIi (ci) +K 0 (ci)

� f (c jci )
df (c jci ) =dci

:
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Moreover, by Lemma 4 �sbi;p (ci; cj) = �L; 8ci 2 [c; ci2). Using in the above equation,
we �nd that qIIi (ci) is de�ned by (16) in the lemma.
The proof is identical for ci 2 (ci3; ci4].

B.3.4 The solution for ci 2 (ci4; c]
De�ne

' (ci) �
Z c

ci

f (c jyi ) fi (yi) dyi;8ci 2 (ci4; c] :

Proceeding as for ci 2 [c; ci1) ; one �nds the expected transfer

E [ti (ci) jci > ci4 ] =

Z c

ci4

�Z c

c

[[�i (ci4; cj) +K (ci4)] (ci4; cj) (65)

+ciqi (ci; cj) (ci; cj)] dcjg f (c jci ) fi (ci) dci

+

Z c

ci4

�Z c

c

�
[�i (ci; cj) +K (ci)]

d (ci; cj)

dyi

�qi (ci; cj) (ci; cj)] dcjg' (ci) dci:

Substituting (65) into fW (ci4; c) ; we can characterize the optimal output qVi (ci) as

S 0
�
qVi (ci)

�
= ci � (1� �)

1� F (ci jc)
f (ci jc)

;

with [1� F (ci jc)] =
R c
ci
f(cjyi )fi(yi)dyiR c

c f(cjci )fi(ci)dci
and f (ci jc) = f(cjci )fi(ci)R c

c f(cjci )fi(ci)dci
.

B.4 Proof of Proposition 3
The interim pro�t of Ai when he reports ri and Aj reports his true type is given

by

Ecj [e�i (ri; cj)] = qsbi (ri) (ri � ci) +K (ri)�K (ci) +

Z c

c

�i (ri; cj) f (cj jci ) ; (66)

with qsbi the SB output in each of the cost intervals in Lemma 6. The ex post pro�t
�i (ri; cj) that appears in (66) is calculated di¤erently, according to the value the
report ri takes. We thus perform the analysis case by case.

B.4.1 Case ri 2 [c; ci1]
We will proceed as follows. We �rst calculate the ex post pro�t �i (ri; cj) ;

8ri 2 [c; ci1] ; 8cj 2 [c; c] ; 8i 6= j 2 f1; 2g : We replace into (66) so as to calcu-
late Ecj [e�i (ri; cj)] : We �nally state the global incentive condition Ecj [e�i (ri; cj)] �
Ecj [�i (ci; cj)] for any report ri 2 [c; ci1] : Two sub-cases are considered, namely
ci 2 [c; ci1] and ci 2 [ci1; c] :
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The ex post pro�t �i (ri; cj) Recall that cik 2 fci1; ci4g is a type ci for which
Ecj (�i (cik; cj)) = 0. Using the de�nition of cik and replacing

R c
c
 (cik; cj) dcj =

1
f(cjr(cik)jcik ) (from (58)) into (61) ; we obtain

gi (ci) =
K (cik)

f (cjr (cik) jcik )
+ ciq

sb
i (ci)

Z c

c

 (ci; cj) dcj �
Z c

c

hi (ci; cj) (ci; cj) dcj

+

Z cik

ci

�Z c

c

�
qsbi (yi) (yi; cj)�

�
�sbi;p (yi; cj) +K (yi)

� d (yi; cj)
dyi

�
dcj

�
dyi

+hi (ci; cjr (ci)) :

We further calculateZ c

c

ciq
sb
i (ci) (ci; cj) dcj �

Z c

c

hi (ci; cj) (ci; cj) dcj + hi (ci; cjr (ci))

=

Z c

c

�
ciq

sb
i (ci)� h (ci; cj)

�
 (ci; cj) dcj + hi (ci; cjr (ci))

=

Z c

c

�
�K (ci)� �sbi;p (ci; cj)

�
 (ci; cj) dcj + �sbi;p (ci; cjr (ci))

+ciq
sb
i (ci) +K (ci)

=

Z c

c

[�K (ci) + L] (ci; cj) dcj � L+ ciq
sb
i (ci) +K (ci)

= [L�K (ci)]
1� f (cjr (ci) jci )
f (cjr (ci) jci )

+ ciq
sb
i (ci)

and then substitute into the expression of gi (ci) above. Rearranging yields

gi (ci) = ciq
sb
i (ci) +

Z cik

ci

qsbi (yi)

Z c

c

 (yi; cj) dcjdyi

+
1� f (cjr (ci) jci )
f (cjr (ci) jci )

[L�K (ci)] + L

Z cik

ci

Z c

c

d (yi; cj)

dyi
dcjdyi

�
Z cik

ci

Z c

c

K (yi)
d (yi; cj)

dyi
dcjdyi +

K (cik)

f (cjr (ci) jcik )
:

Integrating by parts
R cik
ci

R c
c

d (yi;cj)

dyi
dcjdyi; where  (yi; cj) is de�ned by (58) ; andR cik

ci

R c
c
K (yi)

d (yi;cj)

dyi
dcjdyi and then replacing into the above expression of gi (ci) ;

we �nd

gi (ci) = ciq
sb
i (ci) +K (ci) +

1� f (cjr (ci) jcik )
f (cjr (ci) jcik )

L (67)

+

Z cik

ci

Z c

c

�
qsbi (yi) +K 0 (yi)

�
 (yi; cj) dcjdyi:
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Using (67) in (2a) for ti (ri; cjr (ri)) = gi (ri) (knowing that gi (ri) is the transfer that
corresponds to type cjr (ri)); the reward of Ai when he reports ri 2 [c; ci1] and Aj
has type cjr (ri) = c is written

�i (ri; c) =

Z ci1

ri

qIi (yi) +K 0 (yi)

f (c jyi )
dyi +

1� f (c jci1 )
f (c jci1 )

L; (68)

From the proof of Lemma 6, �i (ri; cj) = �L whenever ri 2 [c; ci1] and cj 6= c.

The interim pro�t Using (68) and �i (ri; cj) = �L for cj 6= c in (66) ; Ecj [e�i (ri; cj)]
is rewritten

Ecj [e�i (ri; cj)] = �
Z ci

ri

�
qIi (ri) +K 0 (yi)

�
dyi + f (c jci )

Z ci1

ri

qIi (yi) +K 0 (yi)

f (c jyi )
dyi

�
�
1� f (c jci )

f (c jci1 )

�
L; (69)

whereas the interim pro�t from a truthful report ri = ci is given by

Ecj [�i (ci; cj)] = f (c jci )
Z ci1

ci

qIi (yi) +K 0 (yi)

f (c jyi )
dyi �

�
1� f (c jci )

f (c jci1 )

�
L: (70)

Sub-case ci 2 [c; ci1] Using (69) and (70) ; we have Ecj [�i (ci; cj)] � Ecj [e�i (ri; cj)]
if and only ifZ ri

ci

�
qIi (yi) +K 0 (yi)

� �
1� f (c jci )

f (c jyi )

�
dyi +

Z ri

ci

�
qIi (ri)� q1i (yi)

�
dyi � 0: (71)

This condition is satis�ed whenever so is (27) in Proposition 3.

Sub-case ci 2 [ci1; c] Assume that ri = ci1 and calculate

dEcj [e�i (ci1; cj)]
dci

= �
�
qIi (ci1) +K 0 (ci)

�
+

L

f (c jci1 )
df (c jci )
dci

= �
�
qIi (ci1) +K 0 (ci1)

�
+

L

f (c jci1 )
df (c jci1 )
dci1

+K 0 (ci1)�K 0 (ci) +
L

f (c jci1 )

�
df (c jci )
dci

� df (c jci1 )
dci1

�
= K 0 (ci1)�K 0 (ci) +

L

f (c jci1 )

�
df (c jci )
dci

� df (c jci1 )
dci1

�
:

With (29) from Proposition 3 satis�ed for cjr (ci) = c;
dEcj [e�i(ci1;cj)]

dci
� 0: More-

over, if ci = ci1; then Ecj [e�i (ci1; cj)] = Ecj [�i (ci1; cj)] ; which is zero by Lemma 5.
Therefore, under (29) ; Ecj [e�i (ci1; cj)] � 0 whenever ci 2 [ci1; c] and ri = ci1:
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Take now ri � ci1 and calculate

dEcj [e�i (ri; cj)]
dri

= �
Z ci

ri

��
qIi (ri) +K 0 (ri)

� df (c jyi ) =dyi
f (c jri )

+
dqIi (ri)

dri

�
dyi:

We look for the condition under which
dEcj [e�i(ri;cj)]

dri
� 0: Because ci � ci1 and ri � ci1;

this inequality holds if and only if

dqIi (ri)

dri
� �

�
qIi (ri) +K 0 (ri)

� df (c jyi ) =dyi
f (c jri )

;8ri 2 [c; ci1] and yi � ci1; (72)

which is implied by (27) together with Assumption 2 and yi � ri: Since
dEcj [e�i(ri;cj)]

dri
�

0 8ri 2 [c; ci1] and ci 2 [ci1; c] ; whereas Ecj [e�i (ci1; cj)] � 0 (as previously found),
one has Ecj [e�i (ri; cj)] � 0 8ri 2 [c; ci1] and ci 2 [ci1; c] :
Overall, (27) and (29) ensure that Ai has no incentive to report ri 2 [c; ci1] such

that ri 6= ci; whatever his real type.

B.4.2 Case ri 2 [ci1; ci2]
Since �i (ri; cj) = �L for cj 6= c and E [�i (ri; cj)] = 0;8ri 2 [ci1; ci2] (by Lemma

4), we determine �i (ri; c) =
1�f(cjri )
f(cjri ) L. Substituting these values of �i (ri; cj) into

Ecj [e�i (ri; cj)] ; together with qIIi (ri) = df(cjri )=dri
f(cjri ) L � K 0 (ri) (from Lemma 6), for

this interval (66) speci�es as

E
�e�IIi � = Z ri

ci

�
L

f (c jri )

�
df (c jri )
dri

� df (c jyi )
dyi

�
+K 0 (yi)�K 0 (ri)

�
dyi:

From the expression above, condition (29) and cjr (ci) = c; we can establish that
E
�e�IIi � � 0:

B.4.3 Case ri 2 [ci2; ci3]
Proposition 2 shows that, in this case, the condition for global incentive compat-

ibility is given by (12), which is implied by (29).

B.4.4 Case ri 2 [ci3; ci4]
Proceeding as we did for ri 2 [ci1; ci2] ; we �nd that the payo¤ of Ai when he

reports ri is written

E
�e�IVi � =

Z ri

ci

�
L
df (c jri ) =dri
f (c jri )

�K 0 (ri) +K 0 (yi)�
L

f (c jri )
df (c jyi )
dyi

�
dyi

=

Z ri

ci

�
L

f (c jri )

�
df (c jri )
dri

� df (c jyi )
dyi

�
+K 0 (yi)�K 0 (ri)

�
dyi:

Together with cjr (ci) = c; (29) in Proposition 3 involves that E
�e�IVi � � 0:
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B.4.5 Case ri 2 [ci4; c]
We follow the same steps as we did for the very �rst case.

The ex post pro�t �i (ri; cj) Using (67) in (2a) for ti (ri; cjr (ri)) = gi (ri) ; the
reward of Ai when he reports ri 2 [ci4; c] and Aj has type cjr (ri) =c is written

�i (ri; c) = �
Z ri

ci4

qVi (yi) +K 0 (yi)

f (c jyi )
dyi +

1� f (c jci4 )
f (c jci4 )

L; (73)

From the proof of Lemma 6, �i (ri; cj) = �L whenever ri 2 [c; ci4] and cj 6= c.

The interim pro�t The interim pro�t of Ai when he reports ri is given by

E
�e�Vi � =

Z ri

ci

�
qVi (ri) +K 0 (yi)

�
dyi �

Z ri

ci4

�
qVi (yi) +K 0 (yi)

� f (c jci )
f (c jyi )

dyi

�L
�
1� f (c jci )

f (c jci4 )

�
; (74)

whereas the interim pro�t in case of truthtelling is written

Ecj [�i (ci; cj)] = �
Z ci

ci4

�
qVi (yi) +K 0 (yi)

� f (c jci )
f (c jyi )

dyi � L

�
1� f (c jci )

f (c jci4 )

�
: (75)

Sub-case ci 2 [ci4; c] Using (74) and (75) ; we have Ecj [�i (ci; cj)] � Ecj [e�i (ri; cj)]
if and only ifZ ri

ci

�
qVi (yi) +K 0 (yi)

� �
1� f (c jci )

f (c jyi )

�
dyi +

Z ri

ci

�
qVi (ri)� qVi (yi)

�
dyi � 0:

This condition is satis�ed whenever so is (28) in Proposition 3.

Sub-case ci =2 [ci4; c] Take �rst ri = ci4 and calculate

dE
�e�Vi �
dci

= �
�
qVi (ci4) +K 0 (ci)

�
+
df (c jci ) =dci
f (c jci4 )

L

= �
�
qVi (ci4) +K 0 (ci4)

�
+
df (c jci4 ) =dci4

f (c jci4 )
L

+K 0 (ci4)�K 0 (ci) +
df (c jci ) =dci � df (c jci4 ) =dci4

f (c jci4 )
L

= K 0 (ci4)�K 0 (ci) +
df (c jci ) =dci � df (c jci4 ) =dci4

f (c jci4 )
L:

One has
dE[e�Vi ]
dci

� 0 if (29) in Proposition 3 holds. Moreover, E
�e�Vi � = 0 if ci = ri =

ci4. This shows that any type ci =2 [ci4; c] that reports ri = ci4 obtains E
�e�Vi � � 0:
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Furthermore,

dE
�e�Vi �
dri

=
�
qVi (ri) +K 0 (ri)

� �
1� f (c jci )

f (c jri )

�
+

Z ri

ci

dqVi (ri)

dri
dyi

=

Z ri

ci

�
dqVi (ri)

dri
+
�
qVi (ri) +K 0 (ri)

� df (c jyi ) =dyi
f (c jri )

�
dyi:

E
�e�Vi � � 0 for any report ri 2 [ci4; c] if dE[e�Vi ]dri

� 0; which is implied by

dqVi (ri)

dri
� �

�
qVi (ri) +K 0 (ri)

� df (c jyi ) =dyi
f (c jri )

:

In turn, this is implied by (28) in Proposition 3 together with Assumption 2 and
yi � ri.
Overall, Ai has no incentive to report ri 2 [ci4; c] such that ri 6= ci whenever (28)

and (29) are satis�ed.

C Proof of Proposition 4
We proceed as follows. We begin by showing that, whenever (29) is violated for

any feasible ci; at the SB solution, there exists no ci 6= bc for which (PC) is binding.
We then rewrite (�) for the situation in which (PC) is not binding 8ci 6= bc and show
that there exists a unique cost range over which pooling arises.
Assume that (PC) is binding over some non empty interval

�
cLi ; c

H
i

�
; with either

cLi 6= bc or cHi 6= bc or both, 8i 2 f1; 2g : Assume also that FB is not implementable over
this interval at the solution to (�) : From the proof of Lemma 6, the SB quantity
would be qIIi (ci) ;8ci 2

�
cLi ; c

H
i

�
: Furthermore, the proof of Proposition 3 shows

that the quantity qIIi (ci) and the transfers that leave no rent to agents are not
implementable when (29) is not satis�ed for any feasible ci: This contradicts the
assumption that (PC) is binding and, at the same time, FB is not at hand for types
in
�
cLi ; c

H
i

�
:

Assume now that, at the solution to (�) ; (PC) is binding and FB is implemented
8ci 2

�
cLi ; c

H
i

�
: From Lemma 5, it follows that there exist other cost values around�

cLi ; c
H
i

�
for which (PC) is binding and the SB quantity is qIIi (ci) : Once again, since

(29) is not satis�ed for any feasible ci, this contradicts also the assumption that FB
is enforced 8ci 2

�
cLi ; c

H
i

�
.

Overall, there exists no subset
�
cLi ; c

H
i

�
; with either cLi 6= bc or cHi 6= bc or both,

in which (PC) is binding. It follows that (PC) is slack for 8ci 6= bc: Hence, the
interval [ci2; ci4] de�ned by Lemma 4 reduces to the singleton fbcg : From the proof
of Proposition 3, the scheme is globally incentive compatible whenever

dqsbi (ci)

dci
� �

�
qsbi (ci) +K 0 (ci)

� df (cjr (ci) jci ) =dci
f (cjr (ci) jci )

; 8ci 2 [c; c] ; ci 6= bc; (76)
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qsbi (ci) being the SB quantity for type ci: We can thus rewrite (�) as

max
qi(ci)

fW �
X
i6=j

hfW (c;bc) +fW (bc; c)i
s:t: (76) ;

where fW (c;bc) and fW (bc; c) as de�ned in the proof of Lemma 6 are such that, beside
(76), all other relevant constraints are satis�ed. In particular, fW (c;bc) is de�ned by
(55) with ci1 replaced by bc and �sbi;p (ci; cj) = �L. For low and high types, the optimal
quantities are still qIi (ci) and q

V
i (ci) respectively, as characterized by (15) and (19)

in Lemma 6. However, such quantities do not satisfy (76) in a neighborhood of bc:
To see this, rewrite (76) as

qsbi (ci) � qsbi (bc) + Z bc
ci

�
qsbi (yi) +K 0 (yi)

� df (c jyi ) =dyi
f (c jyi )

; 8ci 2 [c;bc)
qsbi (ci) � qsbi (bc)� Z ci

bc
�
qsbi (yi) +K 0 (yi)

� df (c jyi ) =dci
f (c jyi )

; 8ci 2 (bc; c] :
In either inequality, the RHS approaches qsbi (bc) for ci close to bc: Moreover, at the
solution to (�) ; qsbi (bc) = qfbi (bc) and qIi (ci) < qfbi (ci) < qVi (ci) 8ci 2 [c; c] : Hence,
output pooling arises around bc. The pooling interval is unique for the same reasons
as in Lewis and Sappington [6] (compare pp. 309-310 in their paper) and the proof is
here omitted. Since the unique pooling interval includes bc and since qsbi (bc) = qfbi (bc) ;
we have qsbi (ci) = qfbi (bc) 8ci 2 �c�i ; c+i � ; where c�i is de�ned by qIi (c�i ) = qfbi (bc) and
c+i by q

V
i (c

+
i ) = qfbi (bc) :
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