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Abstract: This paper evaluates the effects of a Benthamite formulation for the utility function into the Ramsey
model with logistic population growth, introduced by Brida and Accinelli (2007). Within this framework, we
demonstrate the economy to be described by a four dimensional dynamical system, whose unique non-trivial
steady state equilibrium is a saddle point with a two dimensional stable manifold. Two stable roots, rather than
only one as in basic neoclassical models, now determine the speed of convergence.
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1 Introduction
The Ramsey growth model is a neoclassical model
of economic growth based primarily on the work of
Ramsey (1928), whose brilliant idea was to deter-
mine the saving rate endogenously, through a dynamic
maximization process. This is what makes the Ram-
sey model different from the traditional neoclassical
model of economic growth, known as the Solow-Swan
model (Solow, 1956; Swan, 1956), where the saving
rate is constant and exogenous. In the standard Ram-
sey growth model, the human population size is as-
sumed to be equal to the labor force. An assump-
tion of that model, however, is that the growth rate
of population is constant, yielding an exponential be-
havior of population size over time. Clearly, this type
of time behavior is unrealistic and, more importantly,
unsustainable in the very long-run. A more realistic
approach would be to consider a logistic law for the
population growth rate. This approach was considered
by Brida and Accinelli (2007), who analyzed how the
Ramsey model is affected by the choice of a logistic
growth of population. Their analysis was done un-
der the assumption that the society’s welfare is mea-
sured by a utility function of per capita consumption.
However, an alternative plausible formulation of the
planner’s problem would be to use the so-called Ben-
thamite welfare function, in which society’s welfare
over time is measured by weighting the utility index
of per capita consumption by numbers, i.e. multiply-
ing the utility function of the representative man by
the total population. This is exactly the main objec-

tive of our paper. In our analysis of the Ramsey model
with logistic population growth under the Benthamite
formulation, we see that the economy is described by
a dynamical system, whose unique non-trivial steady
state equilibrium is saddle point stable. As well, the
stable saddle-path is two dimensional, thus enriching
the transitional adjustment paths relative to that of the
standard Ramsey growth model. Two stable roots,
rather than only one as in basic neoclassical models,
now determine the speed of convergence.

2 Model setup
Consider a closed economy populated by a fixed num-
ber of identical infinitely lived households that, for
simplicity, is normalized to one. Following Brida and
Accinelli (2007), the household size, Lt, grows ac-
cording to the logistic growth law

.
Lt = Lt(a− bLt), a > b > 0, (1)

where L0 is normalized to one, a dot over a variable
denoting time derivative. Let Ct be aggregate con-
sumption, and ct = Ct/Lt denote consumption per
capita. Each household maximizes its dynastic utility

∞∫

0

c1−θ
t

1− θ
Lte

−ρtdt, (2)

where ρ > 0 is the rate of time preference, and θ > 0
represents the inverse of the elasticity of intertemporal



substitution. Contrary to Brida and Accinelli (2007),
the felicity function c1−θ

t /(1− θ), known as constant
intertemporal elasticity of substitution (or CIES) func-
tion, is multiplied by the size of the family, indicating
that at any point in time overall utility is equal to the
addition of the felicities of all family members alive
at that time. This means that the felicity function be-
comes Ltc

1−θ
t /(1− θ), the so-called Benthamite wel-

fare function, so that the number of family members
receiving the given utility level is taken into account.
Output Yt is produced with the Cobb-Douglas tech-
nology

Yt = Kα
t L1−α

t , α ∈ (0, 1),

where Kt denotes the capital stock. The household’s
budget constraint is Yt = It + Ct, where It is gross
investment. The capital stock accumulates according
to the following law of motion

.
Kt = It − δKt,

where δ > 0 is the depreciation rate. Let yt = Yt/Lt

and kt = Kt/Lt denote output and capital stock per
capita, respectively. The production function can be
expressed in intensive form as yt = kα

t . As well, tak-
ing derivatives with respect to time in the definition of
kt, the budget constraint becomes

.
kt = kα

t − (δ + a− bLt)kt − ct. (3)

The household’s optimization problem is to maximize
its dynastic utility (2) subject to constraints (1) and
(3). Solving this continuous-time dynamic problem
involves using calculus of variations. Let H be the
current-value Hamiltonian of the household’s prob-
lem, i.e.

H =
c1−θ
t

1− θ
Lt + λt [kα

t − (δ + a− bLt)kt − ct]

+ µt [Lt(a− bLt)] ,

where µt and λt are the costate variables associated to
(1) and (3), respectively. The Pontryagin conditions
for optimality are given by Hct = 0,

.
λt = ρλt −Hkt ,

.
µt = ρµt −HLt ,

.
kt = Hλt ,

.
Lt = Hµt , together with

the transversality conditions. These yields

c−θ
t Lt = λt, (4)

.
λt = −λt[αkα−1

t − δ − ρ− (a− bLt)],

.
µt = µt(ρ− a + 2bLt)− bλtkt − c1−θ

t

1− θ
,

plus equations (1) and (3), as well as

lim
t→∞e−ρtλtkt = 0, lim

t→∞e−ρtµtLt = 0.

Differentiating (4) with respect to time, and using for-
mula (4), we can rid (4) of the

.
λ and λ expressions.

After rearrangement, we get that the dynamic behav-
ior of the economy can be described by the following
system of differential equations

.
kt = kα

t − (a− bLt + δ) kt − ct,

.
ct =

ct

θ

(
αkα−1

t − δ − ρ
)
,

.
Lt = Lt(a− bLt),
.
µt = µt(ρ− a + 2bLt)− c−θ

t

(
bLtkt +

ct

1− θ

)
,

together with the following conditions

lim
t→∞e−ρtc−θ

t Ltkt = 0, lim
t→∞e−ρtµtLt = 0.

Remark 1. Compared with the model of Brida and
Accinelli (2007), population growth has now no effect
on the growth rate of per capita consumption.

3 Local dynamics
We now proceed to carry out the study of local dy-
namics of the above dynamical system. We focus on
the steady state at which the growth rates of kt, ct, Lt

and µt are equal to zero. Our analysis is restricted
to the case of interior steady states in order to ex-
clude the economically meaningless solutions such as
k∗ = 0, c∗ = 0, or L∗ = 0. An asterisk below a
variable denotes its stationary value. We can state the
following result.

Lemma 2. The unique non-trivial steady state of the
economy is

k∗ =
(

α

δ + ρ

) 1
1−α

, c∗ =
[
ρ + (1− α)δ

α

]
k∗,

L∗ =
a

b
, µ∗ =

c−θ∗
a + ρ

(
ak∗ +

c∗
1− θ

)
.

Proof. Imposing the stationary conditions
.
kt =

.
ct =

.
Lt =

.
µt = 0 yields the equations

kα
t − δkt = ct, αkα−1

t = δ + ρ, Lt =
a

b
,

µt(a + ρ)− ac−θ
t kt − c1−θ

t

1− θ
= 0.

The steady state value can now be determined in a re-
cursive manner.



Proposition 3. The steady state is a saddle point with
a two dimensional stable manifold.

Proof. From the theory of linear approximation, we
know that in a neighborhood of the steady state the
dynamic behavior of a non-linear system is character-
ized by the behavior of the linearized system around
the steady state. In our case this means




.
kt
.
ct
.
Lt
.
µt


 = J∗




kt − k∗
ct − c∗
Lt − L∗
µt − µ∗


 , (5)

where J∗ = (J∗ij), i, j = 1, 2, 3, 4, is the Jacobian
matrix evaluated at the steady state (k∗, c∗, L∗, µ∗).
By definition, J∗11 = (∂

.
kt/∂kt)∗, J∗12 = (∂

.
kt/∂ct)∗,

J∗13 = (∂
.
kt/∂Lt)∗, J∗14 = (∂

.
kt/∂µt)∗. Similarly for

the other J∗ij entries. Computing these elements, we
get

J∗11 = ρ, J∗12 = −1, J∗13 = bk∗, J∗14 = 0,

J∗21 = −(1− α)αc∗kα−2∗
θ

, J∗22 = J∗23 = J∗24 = 0,

J∗31 = J∗32 = J∗34 = 0, J∗33 = −a,

J∗41 = −ac−θ
∗ , J∗42 = θc−1

∗ µ∗(a + ρ)− c−θ∗
1− θ

,

J∗43 = 2bµ∗ − bk∗c−θ
∗ , J∗44 = a + ρ,

Two eigenvalues of J∗ are immediately seen to
be given by ξ1 = a + ρ, ξ2 = −a, and the
other two eigenvalues are those of the submatrix(

J∗11 J∗12

J∗21 J∗22

)
. The two roots of the characteristic

equation associated with this matrix are

ξ3,4 =
ρ

2
±

√
ρ2

4
+ A,

where we define A = (1 − α)αc∗kα−2∗ /θ. Recalling
that the determinant (resp. trace) of a matrix is also
equal to the product (resp. sum) of its eigenvalues,
we derive that these roots are real with opposite signs.
Let ξ3 be the smaller and ξ4 be the bigger root. In
conclusion, we have found that the matrix J∗ has two
real positive (unstable) and two real negative (stable)
roots. This proves that the steady state is (locally) a
saddle point. The stable manifold is the hyperplane
generated by the associated eigenvectors, with dimen-
sion equal to the number of negative eigenvalues (see
Simon and Blume, 1994).

From (5) we see that the system



.
kt
.
ct
.
Lt


 =




ρ −1 bk∗
−A 0 0

0 0 −a







kt − k∗
ct − c∗
Lt − L∗




describes the behavior of kt, ct, Lt around the steady
state values. The solution to such a linear system is
known to be given by




kt − k∗ = B1d11e
ξ2t + B2d12e

ξ3t + B3d13e
ξ4t,

ct − c∗ = B1d21e
ξ2t + B2d22e

ξ3t + B3d23e
ξ4t,

Lt − L∗ = B1d31e
ξ2t + B2d32e

ξ3t + B3d33e
ξ4t,

where B1, B2, B3 are arbitrary constants, to be deter-
mined using the initial conditions and the transversal-
ity conditions, and the vectors [d11 d21 d31]T , [d12 d22

d32]T , [d13 d23 d33]T are the eigenvectors associated
with each of the three roots ξ2, ξ3, ξ4. The eigenvec-
tors associated with ξi (i = 2, 3, 4) are obtained solv-
ing




ρ− ξi −1 bk∗
−A −ξi 0
0 0 −a− ξi







v1

v2

v3


 = 0.

So that we get




kt − k∗ = B1abk∗e−at + B2ξ3e
ξ3t + B3ξ4e

ξ4t,

ct − c∗ = B1Abk∗e−at −B2Aeξ3t −B3Aeξ4t,

Lt − L∗ = B1[A− (ρ + a)a]e−at.

Because eξ4t diverges to infinity, convergence to the
steady state immediately implies B3 = 0. Thus, the
solutions along the stable manifold of the saddle-path
are given by





kt − k∗ = B1abk∗e−at + B2ξ3e
ξ3t,

ct − c∗ = B1Abk∗e−at −B2Aeξ3t,

Lt − L∗ = B1[A− (ρ + a)a]e−at,

(6)

with the constant appearing in the solution obtained
from the initial conditions.

4 Speed of convergence
In previous growth models, in which all variables
moved in proportion to one another, the associated
unique stable eigenvalue sufficed to characterize the
transition. With two stable roots, ξ2 and ξ3, the speeds
of adjustment change over time, although asymptoti-
cally all scale-adjusted variables converge to their re-
spective equilibrium at the rate of the slower grow-
ing eigenvalue, min {−ξ2,−ξ3}. In general, we de-
fine the speed of convergence at time t of a variable z



as

βt =
.
zt

zt − z∗
. (7)

This expression measures the rate of convergence at
any instant of time in terms of the percentage rate of
change in the distance zt − z∗. When the stable mani-
fold is one dimensional, this measure equals the mag-
nitude of the unique stable eigenvalue. By contrast,
in the present model, the stable transitional path is a
two dimensional locus, and a two-dimensional stable
manifold generates time-varying convergence speeds.
It is nevertheless desirable to have one comprehensive
measure, that summarizes the speed of convergence of
the overall economy. For this purpose the percentage
change in the Euclidean distance

βt =
√

(kt − k∗)2 + (ct − c∗)2 + (Lt − L∗)2 (8)

serves as a natural summary measure of the speed of
convergence. At any instant of time, the generalized
speed of convergence is a weighted average of the
speeds of convergence of three variables, the weights
being the relative square of their distance from the
steady state equilibrium. As well, note that log dif-
ferentiation of (8) yields

.
βt

βt
=

∑

z∈{k,c,L}

[
(zt − z∗)2

β2
t

]
.
zt

zt − z∗
. (9)

Therefore, we derive that (8) generalizes the one di-
mensional measure (7). Finally, (6) implies that the
speed of convergence of any variable at any point in
time is a weighted average of the two negative eigen-
values of J∗. Over time, the weight of the smaller
(more negative) eigenvalue declines, so that the larger
of the two stable (negative) eigenvalues describes the
asymptotic speed of convergence.

5 Conclusion
In this paper we have considered a modified version of
the standard Ramsey growth model, obtained by intro-
ducing a Benthamite utility function, and a logistic-
type population growth law. This set up has led the
model to be described by a four dimensional dynami-
cal system, that is proved to have a unique non-trivial
steady state equilibrium (a saddle point). The saddle-
path stable system now has two negative eigenvalues,
so that the stable manifold is a two dimensional locus,
thereby introducing important flexibility to the con-
vergence and transition characteristics. The crucial
determinant of the asymptotic speed of convergence
is the larger of the two negative eigenvalues.
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