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Abstract: We extend the Solow-Swan model with a logistic-type population growth, introduced by Ferrara and
Guerrini (2008), by incorporating technological progress in pollution abatement, in a way similar to Brock and
Taylor (2004). Within this framework, we determine the model’s solution and prove the economy to be convergent
in the long-run. In addition, we investigate sustainable growth and show that this occurs if technological progress
in abatement is faster than technological progress in production. Moreover, an environmental Kuznets curve may
result along the transition to the balanced growth path.
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1 Introduction

The traditional neoclassical model of economic
growth, first developed by Solow (1956) and Swan
(1956), who independently proposed similar one-
sector models, provides a theoretical framework for
understanding world-wide growth of output and the
persistence of geographical differences in per capita
output. The key concept of this model, famously
known as the Solow-Swan model, is the neoclassical
form of production function with declining returns to
capital combined with a fixed saving rate. On the ba-
sis of these assumptions, an economy, regardless of its
starting point, converges to a balanced growth path,
where long-run growth of output and capital are de-
termined solely by the rate of labor-augmenting tech-
nological progress and the rate of population growth
(see, for example, Barro and Sala-i-Martin, 1995).

Ferrara and Guerrini (2008) have analyzed the
role of a variable population growth rate within the
Solow-Swan model by assuming a logistic-type pop-
ulation growth law. Within this set up, the model is
proved to have a unique equilibrium, which is globally
asymptotically stable. As well, its solution is shown
to have a closed-form expression via Hypergeometric
functions. As is typical in the neoclassical model, the
human population size is assumed to be equal to the
labor force. An assumption of that model, however, is
that the growth rate of population is constant, yielding
an exponential behavior of population size over time.
Clearly, this type of time behavior is unrealistic and,
more importantly, unsustainable in the very long-run.

A more realistic approach would be to consider a lo-
gistic law for the population growth rate.

Brock and Taylor (2004) have demonstrated
that the Solow-Swan model and the environmental
Kuznets curve (hereafter EKC) are intimately re-
lated (for the EKC, see, for example, Grossman and
Krueger, 1995). Amending the Solow-Swan model to
incorporate technological progress in abatement, the
EKC is a necessary by-product of convergence to a
sustainable growth path. The resulting model, which
they called the Green-Solow model, generates an EKC
relationship between the flow of pollution emissions
and income per capita, and the stock of environmental
quality and income per capita.

The main objective of this paper is to combine
within the same framework these two different re-
search lines that have been analyzed separately in the
recent past. The two research lines we aim at joining
together are, respectively, the one studying the effects
of including emissions, abatement and a stock of pol-
lution in the Solow-Swan model (Brock and Taylor,
2004), and that analyzing the role of a variable popu-
lation growth rate within the Solow-Swan model (Fer-
rara and Guerrini, 2008).

Within this framework, the economy is described
by a three dimensional dynamical system, whose so-
lution can be explicitly determined, and proved to be
convergent in the long-run. Finally, we prove that
sustainable growth occurs if technological progress in
abatement is faster than technological progress in pro-
duction. An EKC may result along the transition to
the balanced growth path.



2 Model setup
We start considering the standard Solow-Swan model,
i.e. a closed economy consisting of a single good that
can be used either for consumption Ct or investment.
Aggregate output Yt depends on capital Kt and labor
Lt according to a constant returns to scale produc-
tion function. Technological progress is introduced in
terms of an aggregate parameter Bt, reflecting the cur-
rent state of labor-augmenting technological knowl-
edge. Taking a Cobb-Douglas production function,
we arrive at

Yt = F (Kt, BtLt) = (BtLt)1−αKα
t , (1)

with α ∈ (0, 1). The model assumes constant returns
to capital Kt and effective labor input BtLt, and per-
fect competition. The saving rate s and the depreci-
ation rate δ are assumed to be constant and exoge-
nous. The evolution of capital can be described as
.

Kt = sYt − δKt, where a dot over a variable denotes
differentiation with respect to time. Moreover, con-
sumption is proportional to output, Ct = (1− s)Yt.

To model the impact of pollution we follow
Copeland and Taylor (1994) by assuming that pollu-
tion is jointly produced with output, and take this re-
lationship to be proportional. Every unit of economic
activity F generates Ωt units of pollution. Pollution
emitted Et is equal to pollution created minus pollu-
tion abated. Abatement of pollution At takes as in-
puts the flow of pollution, which is proportional to
the gross flow of output F , and abatement inputs, de-
noted by FA. The abatement production function is
standard, i.e. it is assumed to be strictly concave and
having constant returns to scale. If abatement at level
At removes the ΩtAt units of pollution from the total
created, then we can write pollution emitted as

Et = ΩtF − ΩtA(F, FA) = ΩtFa(θ), (2)

where θ = FA/F is the fraction of economic activity
dedicated to abatement, and a(θ) = 1 − A(1, θ). To
match the Solow-Swan model, where the exogenous
technological progress in goods production raises ef-
fective labor at rate g > 0, i.e.

.
Bt/Bt = g, we as-

sume exogenous technological progress in abatement
lowering Ωt at rate gA > 0, i.e.

.
Ωt/Ωt = −gA.

To combine the assumptions on pollution with
our Solow-Swan model, we follow Brook and Taylor
(2004) by requiring the economy to employ a fixed
fraction of its inputs, both capital and effective labor,
in abatement. This means that the fraction of total
output allocated to abatement θ is fixed much like the
familiar fixed saving rate assumption. As a result, out-
put available for consumption or investment becomes

(1−θ)Yt. In addition, we must adopt some assumption
concerning natural regeneration. We treat pollution as
a flow that either dissipates instantaneously, such as
noise pollution, or a stock that is only eliminated over
time by natural regeneration, such as sulfur or lead
emissions. In other words, the stock of pollution Xt

is related to the flow of emissions Et according to
.

Xt = Et − ηXt, (3)

where η > 0 is the speed of natural regeneration.
The population growth rate is modelled according

to Ferrara and Guerrini (2008), i.e. we have
.
Lt

Lt
= a− bLt, a > b > 0, (4)

where, for simplicity, the initial population has been
normalized to one, i.e. L0 = 1. Usually, standard eco-
nomic growth theory considers that population grows
exponentially. However, this hypothesis is realistic
only for an initial period, but it cannot be valid indef-
initely because population growing exponentially can
be arbitrarily large. What is often observed instead is
that as the population grows, some members interfere
with each other in competition for some critical re-
source. That competition diminishes the growth rate,
until the population ceases to grow. It seems reason-
able that a good population model must therefore re-
produce this behavior. The logistic population growth
model, written in equation (4), which was first inves-
tigated by Verhulst in the late 1830s, is just such a
model.

Putting these assumptions together and trans-
forming our measures of output and capital into inten-
sive units, our modified Solow-Swan model becomes

.
kt = Mkα

t − [δ + g + n(Lt)] kt, (5)
.
xt = a(θ)Ω0e

−gAtkα
t − [η + g + n(Lt)]xt, (6)

.
Lt = n(Lt)Lt, (7)

where n(Lt) = a − bLt, M = (1 − θ)s, and yt =
Yt/BtLt, kt = Kt/BtLt, xt = Xt/BtLt denote out-
put, capital and stock of pollution measured in inten-
sive units, respectively. Given k0 > 0, x0 > 0, this
Cauchy problem has a unique solution (kt, xt, Lt), de-
fined on [0,∞) (see Birkhoff and Rota, 1978).

3 The solution
We want to provide an analytical solution for the vari-
ables appearing in the dynamical system (5)− (7).

Lemma 1. For all t, we have

Lt =
aeat

a− b + beat
, lim

t→∞Lt =
a

b
. (8)



Proof: The statement is obtained by separating the
Lt and t dependent parts of equation (7), integrating
both sides, and then using the initial value of the pop-
ulation. ut
Remark 2. Lt is a monotone increasing function from
L0 = 1 to L∞ = a/b. Moreover, n(L∞) = 0, i.e. L∞
is a constant solution of (7).

Proposition 3. Let ϕt = ae(δ+g+a)t/(a − b + beat).
For all t, the time path of the capital stock measured
in intensive units is

kt = ϕ−1
t

[
k1−α

0 + (1− α)M
∫ t

0
ϕ1−α

t dt

] 1
1−α

(9)

lim
t→∞kt =

(
M

δ + g

) 1
1−α

. (10)

Proof: Equation (5) is a Bernoulli differential equa-
tion. In order to solve it, we first divide the dif-
ferential equation by k−α

t , and then use the substi-
tution zt = k1−α

t to convert this into a differential
equation in terms of zt. The corresponding equation,
.
zt = (1−α)M−(1−α) [δ + g + n(Lt)] zt, is a linear
differential equation, whose solution we know how to
determine. Since

e−(1−α)
∫ t
0 [δ+g+n(Lt)]dt = e−(1−α)(δ+g)tL

−(1−α)
t ,

this solution writes

zt = e−(1−α)(δ+g)tL
−(1−α)
t ·

·
(

z0 + (1− α)M
∫ t

0
e(1−α)(δ+g)tL1−α

t dt

)
.

The first part of the statement follows by expressing
the above equation in terms of kt, and then introduc-
ing the substitution (8). In order to prove the second
part of the statement, we write (9) more conveniently

k1−α
t =

k1−α
0 + (1− α)M

∫ t

0
ϕ1−α

t dt

ϕ1−α
t

. (11)

ϕt is an increasing function, which diverges. Hence,
ϕ1−α

t → ∞ and
∫ t
0 ϕ1−α

t dt ≥ ∫ t
0 dt = t → ∞. Con-

sequently, as t grows to infinity, the right-hand side
of (11) leads to an indeterminate form, which can be
solved applying Hopital’s rule. This yields

lim
t→∞k1−α

t = lim
t→∞

M(a− b + beat)
(δ + g)(a− b + beat) + a(a− b)

.

The statement of (10) follows immediately. ut

Remark 4. k∞ = [M/(δ + g)]
1

1−α is a constant so-
lution of (5). Moreover,

.
kt is positive (resp. negative)

for kt smaller (resp. larger) than k∞. This implies
that kt decreases (increases) monotonically to k∞ if
k0 > k∞ (resp. k0 < k∞).

Proposition 5. Let ψt = ae(η+g+a)t/(a − b + beat).
For all t, the time path of the stock of pollution mea-
sured in intensive units is given by

xt = ψ−1
t

(
x0 + Ω0a(θ)

∫ t

0
kα

t e−gAtψtdt

)
, (12)

lim
t→∞xt = 0. (13)

Proof: Equation (6) is a linear differential equation,
which is known to be solved by

xt = e−(η+g)tL−1
t ·

·
(

x0 + a(θ)Ω0

∫ t

0
kα

t e(η+g−gA)tLtdt

)
.

The first part of the statement follows by substituting
(8), and then rearranging the terms in the resulting
equation. For the second part, we rewrite (12) as

xt =
x0 + Ω0a(θ)

∫ t

0
kα

t e−gAtψtdt

ψt
. (14)

As t grows to infinity, the denominator of the right-
hand side of (14) diverges, while the numerator goes
as

∫∞
0 kα

t e−gAtψtdt. If this integral converges, or it
is indeterminate, then (13) is immediate. Whereas,
if the integral diverges, the statement follows as an
application of Hopital’s rule. In fact, from being

lim
t→∞xt = lim

t→∞
kα

t e−gAt(a− b + beat)
(η + g + a)(a− b) + (η + g)beat

,

we obtain that xt must converge to zero because kα
t

converges, and e−gAt goes to zero in the long-run. ut
Corollary 6. Starting from any k0 > 0, x0 > 0, the
long-run behavior of the model’s solution is as fol-
lows: lim

t→∞(kt, xt, Lt) =
(
[M/(δ + g)]

1
1−α , 0, a/b

)
.

4 Sustainable growth and EKC
We define a balanced growth path (BGP, hereafter) to
be a trajectory along which all the relevant variables
either stay constant or grow at a constant rate. We
take as definition of sustainable growth a BGP gener-
ating rising consumption per capita and an improving
environment.

In order to characterize the economy’s balanced
growth path we need the next result.



Lemma 7.

γCt = γYt = αγKt + (1− α)(g + γLt),
γEt = −gA + γYt ,

where we have used the notation γz to express the
growth rate of the variable z.

Proof: The statement follows taking logs and time
derivatives of equations (1), (2), as well as recalling
that consumption and output are proportional. ut
Lemma 8. Along a balanced growth path

γLt = 0, γCt = γYt = γKt = g,

γXt = γEt = g − gA.

Proof: Since γLt is constant along a BGP, we must
have Lt = a/b. Therefore, γLt = 0. The law of mo-
tion for capital yields γKt = sYt/Kt − δ. Along a
BGP, γKt must be constant, so that Yt/Kt must also
be constant. Taking logs and time derivatives of this
yields γYt = γKt . Next, divide both sides of (3) by
Xt, and note that a constant rate of change in Xt re-
quires the ratio Et/Xt to be constant. By log differ-
entiation, we get that, along a BGP, the time rate of
change of Xt must equal that of Et, i.e. γXt = γEt .
The statement now follows from Lemma 7. ut
Remark 9. Along a balanced growth path we must
have γyt = γct = γkt = 0, γxt = γet = −gA.

It follows from Lemma 8 that, along a balanced
growth path, the growth rate of emissions γEt may be
positive, negative or zero. We recall that our require-
ments for sustainable growth imply that γEt < 0.

Proposition 10. There exists sustainable growth if
gA > g. Technological progress in abatement must
exceed growth in aggregate output in order for pollu-
tion to fall and the environment to improve.

Remark 11. Brock and Taylor (2004) showed that
gA > g + n is the condition for sustainable growth
in case of constant population growth rate n.

One final observation. Environmental quality de-
teriorates initially, and improves with economic de-
velopment in later stage as the economy converges on
its balanced growth path. This implies that the model
produces a transition path for income per capita and
environmental quality, which traces out an environ-
mental Kuznets curve (an inverted-U shaped relation-
ship between emissions and income). Technological
progress especially in pollution abatement is primar-
ily responsible to the inverse U-shape of this model.

5 Conclusion
In this paper, we modify an augmented Solow-Swan
model by including emissions, abatement and a stock
of pollution, and by assuming the population to grow
according to the logistic model. In this framework, the
model’s solution is explicitly determined, and shown
to be convergent in the long-run. For sustainable
growth to be possible, technological progress in abate-
ment has to be faster than technological progress in
production. An EKC may result along the transition
to the balanced growth path.
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