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PRELIMINARY AND UNCOMPLETE!

Several other members indicated that they would have preferred to
tighten at that meeting. . . . The asymmetric directive, which held
prospect of near-term tightening, once again allowed FOMC to reach
a consensus.

Meyer (2004), page 83

Abstract

We investigate policy outcomes in a dynamic infinite-horizon bargain-
ing model under two bargaining protocols. First one, ‘without the di-
rective’, captures the standard way monetary policy committees take de-
cisions, most importantly the endogenous nature of the default policy.
Second one, ‘with the directive’, is inspired by the decision protocol of
Federal Open Market Committee, a decision body of the Federal Reserve.
The key difference is that under this bargaining protocol chairman’s offers
are not restricted to those where today’s inflation decision is the default
policy during the next committee meeting.

We provide existence and uniqueness results for both versions of the
model, explicitly derive the equilibrium for the model without the directive
and estimate the equilibrium for the model with the directive.

We show that without the directive policy-makers may fail to reach
an agreement even when their current preferences are identical for fear
of giving up their bargaining position which is valuable in the future dis-
agreement periods.

On the other hand, we prove that in any equilibrium with the directive
committee decisions during the periods when policy-makers have identical
current preferences fully reflect their common will despite the possibility
of future disagreements.

We take this as an evidence of the directive serving consensus building
role during the FOMC decision making process, an idea discussed in the
empirical literature on the topic.

∗ Ph.D. program, London School of Economics, j.zapal@lse.ac.uk



1 Introduction

This paper is an attempt to develop a bargaining model of central bank decision
committee to shed more light on the resulting central bank behaviour.

Most of the existing models suffers from several shortcomings. The older
literature on the dynamic inconsistency of low inflation monetary policy almost
exclusively abstracts from the fact that the monetary policy in most cental
banks is not set by a single individual but by a committee.

Focusing on the papers that explicitly model central bank led by a commit-
tee most of them lack any sort of strategic interaction between the committee
members. Furthermore, most of the papers focus on a single period models and
abstract from any dynamic interactions.

To address those shortcoming, this paper sets up a model in which central
bank is led by a committee. In order to investigate the nature of strategic
interactions the committee is populated by agents that do not always agree
on the best course of the monetary policy. Setting up a model with explicit
time dimension also allows us to capture the dynamic aspect of central bank
decisions. The policy enacted today constitutes a default option during the next
policy decision meeting.

The key research question is the impact of the arrangement in which the
committee at a given meeting decides not only about the policy for current
period, but also about the default policy for the next meeting. This differs from
the usually practice in that it allows the current policy and the next meeting
default policy to differ. Such an arrangement has been used for over two decades
by Federal Open Market Committee (FOMC), monetary policy decision body
of the Federal Reserve System.

At the end of each meeting, FOMC issued a directive specifying not only
its decision about the target federal funds rate but also about its ‘bias’ for the
future. The bias has been either symmetric or asymmetric towards tighten-
ing or easing. We build a model which incorporates this bargaining protocol
and compare its equilibrium with the equilibrium of the model where policy
implemented today is the default policy for the next round of a bargaining.

We provide existence and uniqueness results for both versions of the model
and explicitly solve the bargaining model without the directive. For the model
capturing the FOMC bargaining protocol we partially characterize the result-
ing equilibrium and provide numerical examples for cases where closed form
solutions are hard to obtain.

In terms of results, we show that the bargaining protocol without the direc-
tive prevents policy-makers from reaching consensus even in the periods when
their current preferences are the same and that the dynamic bargaining results
in policy inertia. For the FOMC bargaining protocol with the directive, we show
that it can play consensus building role.

We proceed as follows. Section 2 surveys the related literature and section
3 describes in detail the FOMC decision making procedure. Section 4 lays out
the model which captures the distinction between FOMC and standard decision
making. We solve the two versions of the model in section 5. The we conclude.
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All the proofs are relegated to the appendix.

2 Survey of Literature

The paper is related to several strands of literature. On the most general level
it belong into the strand of literature on dynamic inconsistency of low inflation
monetary policy that started with Kydland and Prescott (1977). Although
interesting we do not provide full survey of this literature (see Persson and
Tabellini (2000) and Drazen (2000) for surveys).

The more relevant literature explicitly models central banks led by a com-
mittee rather than an individual. An early paper Cothren (1988) shows how
low inflationary monetary policy can be sustained through reputation building
central bank. His model avoids a peculiar feature of the low inflation through
reputation result originally derived by Barro and Gordon (1983), namely per-
fectly coordinated trigger strategy used by inflation expectations forming agents.

Creation of European Central Bank has also generated interest in the com-
mittee based central bank models. Matsen and Roisland (2005) investigate an
impact of different voting rules for inflation and output in a committee com-
posed of different country representatives. At the same time Fatum (2006)
derives low inflation result in a model with monetary policy committee. His
result hinges on the fact that representatives of inflation-prone countries can-
not propose negative interest rate. In a framework where the final policy is
given by the weighted mean of individual proposals this gives an advantage to
inflation-averse countries in preceding strategic delegation game.

Gerlach-Kristen (2006) offers a rationale for monetary policy to be decided
by a committee in a model where committee members observe imperfect signals
about unobservable output gap. In this way committee as a whole obtains better
information about the unobservable that defines the optimal policy decision.
She investigates the impact of using different decision rules on the quality of
committee decisions.

Another low inflation through committee result is offered by Dal Bo (2006).
It rest on the specific nature of the voting in his model. Final inflation is the
result of the process which starts with zero inflation as a default and voting takes
place over increments until (super)majority fails to support the new proposal.
In this way inflation unravels only to the border of the (super)majority core
which is lower than the inflation that would prevail in a model with a single
policy maker.

With somewhat different focus Waller (1989, 1992, 2000) investigates models
of partisan appointment to central bank committee that subsequently decides
on the course of monetary policy via majority voting. Chang (2003) runs in a
similar spirit.

Majority of the models mentioned above lack any sort of strategic interac-
tion among the committee members. Resulting policy is often the median of
the policies preferred by the individual committee members or their (weighted)
mean. Complemented by the fact that the policies preferred by the individual
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members are assumed to be a common knowledge leaves no room for strategic
interaction within a committee. Furthermore, most of the models lack explicit
time dimension and hence are inherently static.

Mihov and Sibert (2006) and Sibert (2003) are among the models that focus
on the strategic interaction. Both papers investigate the model with committee
composed of two members both of whom are of either hawk or dove type which is
assumed to be a private information. Low inflation result is derived through the
desire of the inflation-prone dove to acquire reputation which makes subsequent
inflationary surprises less costly.

Despite the strategic interaction within monetary policy committee both
papers treat what happens in the case of committee members’ disagreement
as exogenous. While the former paper assumes that in the case of disagree-
ment implemented policy is weighted mean of members’ preferred ones the later
assumes exogenously specified default policy.

Riboni (2009) avoids the need to specify default policy by using dynamic
bargaining model. In his paper committee composed of fixed agenda setter
(chairman) and ordinary members decides on the monetary policy. Each period
chairman proposes an alternative that is then pitched against the status-quo
in a majority voting, status-quo being the policy implemented in the previous
period.

Low inflation monetary policy is credible in this model since, conditional on
low inflation expectations, unprofitable deviations (inflation surprises) are not
proposed by the chairman and profitable deviations are not accepted by the
committee.

Despite the possibility of achieving low inflationary monetary policy in a
model with monetary policy committee another problem arises in that commit-
tee can produce considerable policy inertia, point stressed by Blinder (1998) (see
experimental results in Blinder and Morgan (2000) that point to the contrary).

This is exactly the point illustrated by Riboni and Ruge-Murcia (2008)
within a similar framework as Riboni (2009). In the model where committee
members’ preferences diverge in certain periods even in the agreement periods
common-optimal policy might not be implemented. This is due to the dynamic
bargaining framework in which ordinary member knows that now-optimal pol-
icy will put him in unfavourable bargaining position in the next period should
the committee members disagree.

On the empirical side several papers deal with various aspects of asymmetric
FOMC directive. Obvious question is whether the bias in the directive signals
future moves in the monetary policy. In this respect Pakko (2005) provides
evidence showing that the bias in the directive has a predictive power regarding
future monetary decisions. On the other hand, Thornton and Wheelock (2000)
and for the pre-1999 also Ehrmann and Fratzscher (2007) speak to the contrary.

Another possibility is that bias in the directive is used by the FOMC as
a means of approving chairman’s inter-meeting changes of the interest rate.
This role of the asymmetric directive is confirmed by Lapp and Pearce (2000)
but rejected by Thornton and Wheelock (2000) and Chappell, McGregor, and
Vermilyea (2007).
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Last possibility is that separating current policy from the future status-quo
serves a consensus building purpose during the committee bargaining. This view
is supported by the evidence in Ehrmann and Fratzscher (2007), Meade (2005)
and Thornton and Wheelock (2000) but Chappell et al. (2007) provide evidence
favouring the opposite. Overall, the empirical literature regarding the purpose
of the asymmetric FOMC directive does not provide support for a single purpose
explanation.

Lastly, Maier (2007) and Sibert (2006) survey economic and social psycho-
logical literature focusing on the implications for monetary policy committee
design. In this respect the economic literature on Condorcet Jury theorem
supports larger committees due to informational advantage in the imperfect in-
formation environments. On the other hand social psychological literature on
group task effectiveness and group decision supports smaller committees that
prevent free-riding of committee members and foster swift decision-making.

3 Institutional Background

The FOMC, monetary policy decision body of the Federal Reserve System,
meets in every about six weeks. It comprises 7 members of Board of Governors
of the Federal Reserve System and 12 presidents of Federal Reserve Banks.
Members with voting power are all governors, president of the Federal Reserve
Bank of New York and on a rotating basis four presidents of the Federal Reserve
Banks.

Structure of the FOMC meetings at least for the Chairman Greenspan years
is to start with staff report on economic conditions followed by ‘economic go-
round’ and subsequently by ‘policy go-round’ (see Chappell et al. (2007) for
more detailed description of FOMC meetings). In an economic go-round FOMC
members took turns in explaining their view on the development of the economy.

Subsequent policy go-round usually started with Chairman’s proposal that
provided the reference for other speakers. At the end of the round Chairman
proposed final policy including the target federal funds rate and the setting for
the bias in the directive after which the formal voting took place in terms of
‘assent’ or ‘dissent’ statements.1

Asymmetric FOMC policy directive has been issued in its original form since
1983 until December 1999.2 Apart from specifying current policy decision it also
included a ‘bias’ which was either asymmetric towards tightening or easing or
symmetric. For example directive biased towards tightening would say:

In the context of the Committee’s long-run objectives for price sta-
bility and sustainable economic growth, and giving careful considera-
tion to economic, financial, and monetary developments, somewhat

1 The description in Chappell et al. (2007) is derived from the transcripts of FOMC meet-
ings published with five year lag which is why there is uncertainty regarding the current
structure of FOMC meetings.

2 See Thornton and Wheelock (2000) for detailed history and empirical evidence suggesting
consensus building hypothesis regarding the role of the asymmetric directive.
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greater reserve restraint would or slightly lesser reserve restraint
might be acceptable in the intermeeting period.

FOMC minutes from August 20, 1996 meeting

Asymmetry towards tightening is exemplified by the use of word ‘would’ as
opposed to ‘might’ in relation to restraint on commercial bank reserve positions.
Symmetric directive would say:

In the context of the Committee’s long-run objectives for price sta-
bility and sustainable economic growth, and giving careful consid-
eration to economic, financial, and monetary developments, slightly
greater reserve restraint or slightly lesser reserve restraint would be
acceptable in the intermeeting period.

FOMC minutes from January 30-31, 1996 meeting

Since February 2000 asymmetry in the directive has been specified in terms
of balance of risks assessment. Original wording has been to specify risks either
for ‘heightened inflation’ or for ‘economic weakness’. From May 2003 the balance
of risks assessment includes the FOMC’s view on both inflation and economic
growth.

Regarding the timing of release of the asymmetry in the directive, until
March 1999 it has been included in the minutes of FOMC meetings that has been
published right after the next FOMC meeting. Since May 1999 it is included in
the press release made public immediately after all the meetings.3

But the Federal Reserve is not the only central bank with similar provision.
Recently Riksbank, Swedish central banks, has been explicitly referring to the
future course of monetary policy. Press release issued after each monetary policy
committee might read:

Continued strong economic activity and rising inflation mean that
the repo rate needs to be increased. It is reasonable to assume that
the interest rate will need to be increased further, roughly in line
with recent market expectations.

press release after December 15, 2006 meeting

The press release might even refer to numerical value regarding the future in-
terest rate. For example:

It is also probable that the interest rate will need to be raised slightly
further in the future. During the first half of 2008 the repo rate is
expected to be around 4.25 per cent.

press release after October 30, 2007 meeting
3On rare occasions FOMC opted not to specify its leaning. For example press release after

the March 18, 2003 meeting reads ‘· · · Committee does not believe it can usefully characterize
the current balance of risks · · · ’.
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4 Model

To investigate how the possibility of having asymmetric directive influences
conduct of monetary policy we investigate the simple model below. Our main
question is whether having asymmetric directive results in different inflation
outcomes and whether the asymmetric directive can be used as a consensus
building mechanism.

The central bank in our model is governed by monetary policy committee
composed of two members. The first member is a fixed chairman who has the
policy proposal power and whom we denote by C (she). The second committee
member is denoted by P (he) and has policy approval power. In other words the
decision within the committee is done via majority voting between C’s proposal
and status-quo with ties decided in favour of the latter.

The utility of both policy-makers is given by

Ui =
∞∑
t=0

δtui,t

for i ∈ {C,P} where δ is the common discount factor and ui,t is the per-period
utility which is given by

ui,t = −(pt − π∗ − εi,t)2 (1)

where π∗ is central banks’s target inflation and εi,t is random time-varying,
i-specific preference shock.

Decisions about the monetary policy are done in the following way. At time
t the committee convenes to make a decision. Up to their meeting policy in
effect was pt−1 and they are convening knowing that the default policy for their
meeting is qt−1. At the meeting C proposes pair γt = {pt, qt}. If P agrees with
the proposal γt is implemented and if he disagrees γ̄t = {pt = qt−1, qt = qt−1}
is implemented instead.

To prevent any confusion, in the text we refer to the {pt, qt} pair as to a
policy, call the policy with which the bargaining starts at time t, i.e. {qt−1, qt−1},
the default policy and reserve terms inflation and status-quo to the first and
second elements of any policy.

To investigate the difference in the conduct of monetary policy with and
without the asymmetric policy directive, we contrast two versions of the model.
First, without the asymmetric directive, restricts C’s proposals to those where
current inflation and the next period status-quo are equal, in other word to the
proposals that satisfy γt = {pt = qt, qt}. This is the way most central bank
committees operate. The interest rate in the current period is the default one
by the time of a next meeting.

The second version, with asymmetric policy directive, tries to capture the
FOMC arangement in that C’s proposals are not restricted as above. For dis-
cussion convenience, we call the two versions of the model with and without
directive respectively, omitting the ‘asymmetric’ adjective and when we refer
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to bargaining protocol, we have in mind this feature that distinguishes the two
versions.

The timing of actions in period t is as follows. First, nature determines
εi,t. Second, committee convenes with εi,t being common knowledge. Third,
C proposes γt against γ̄t and P either agrees or disagrees after which winning
option is implemented and the bargaining moves into period t+ 1.

To close the model, we assume specific distribution of the preference shocks.
The assumption is that in certain periods C and P agree in which case their
preference shocks are equal to zero. In the disagreement periods that happen
with probability pd the committee does not agree on the best course of monetary
policy (see Chappell, McGregor, and Vermilyea (2005) or Meade and Sheets
(2005) for evidence of diverging preferences of FOMC members). We assume
that preference shocks in the disagreement periods are equal to

εi,t =

{
φ for i = P

−φ for i = C

with φ > 0 or in other words in the disagreement periods P prefers higher infla-
tion compared to C. We denote the disagreement periods by D and agreement
periods by A.

Finally, we assume that if C cannot offer any policy γt which gives her
higher utility than the default policy γ̄t she offers γ̄t. In the similar spirit, we
assume that if P is indifferent between γt and γ̄t, he votes for the γt. With this
assumption on the equilibrium path offered policies will always be accepted and
hence implemented so in the discussion we do not need to distinguish between
policies C offers and those that eventually become effective.

Two period model

To build an intuition for the results below, we first solve the two period version
of the model. Observing that in the last period when t = 1 the bargaining
protocol plays no role, it readily follows that pA,1 = π∗. In the D periods, the
policy will in general depend on the default policy. It is easy to show that t = 1
period inflation in D periods as a function of t = 0 period status-quo is

pD,1(x) =


x for x ∈ 〈π∗ − φ, π∗ + φ〉
2(π∗ + φ)− x for x ∈ 〈π∗ + φ, π∗ + 3φ〉
π∗ − φ otherwise.

The intuition is following. In the A periods both policy-makers have the
same preferences and they readily agree on the policy they both prefer. As
their bargaining position in the future is not influenced by today’s policy, there
is nothing to prevent them from reaching consensus.

On the other hand, in the D periods their preferences differ. If the default
policy happens to fall into the interval between their most preferred policies
there is no way they can agree on something else. This is the first case above. If
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the default policy happens to be higher than P ’s most preferred policy, C will
offer policy that makes P indifferent between γ1 and γ̄1 but as close as possible
to her most preferred policy. Under quadratic utility this amounts to offering
γ1 with the same distance from π∗ + φ as the γ̄1 but closer to C’s optimum.
This is the second case above. With the default policy still further from the P ’s
most preferred point, he is willing to accept wide range of policies one of which
is the C’s most preferred policy. Note that in this region, the outcome of the
bargaining does not depend on the default policy.

Plugging the equilibrium inflation into the utility functions and taking ex-
pectations given the information at t = 0, C’s expected utility as a function of
t = 0 policy is

E [UC,0(x)] =


− pd(x− π∗ + φ)2 for x ∈ 〈π∗ − φ, π∗ + φ〉
− pd(π∗ + 3φ− x)2 for x ∈ 〈π∗ + φ, π∗ + 3φ〉

0 otherwise

and P ’s expected utility is

E [UP,0(x)] =

{
− pd(x− π∗ − φ)2 for x ∈ 〈π∗ − φ, π∗ + 3φ〉
− 4φ2pd otherwise.

Proceeding to the first period t = 0, the outcomes will differ depending on
the type of the period, bargaining protocol and on the default policy γ̄0 which
is inevitably exogenous.

Without the directive in the D periods, the equilibrium policy as a function
of the default policy is

pD,0(x) =


x for x ∈ 〈π∗ − φ, π∗ + φ〉
2(π∗ + φ)− x for x ∈ 〈π∗ + φ, π∗ + 3φ〉
π∗ − φ otherwise.

The intuition behind the result is rather simple. For intermediate values of γ̄0,
as the preferences of the policy-makers differ with respect to inflation as well as
with respect to the status-quo for the next period, there is no way they can reach
consensus on something else than γ̄0. If the γ̄0 happens to be above P ’s most
preferred policy π∗+ φ, C will offer policy ‘on the other side’ of P ’s acceptance
set which is closer to C’s optimum. Yet for higher values of the default policy,
P is made better of by C (at least) bringing the policy to her most preferred
one.

It is not hard to show that the equilibrium policy, that is both inflation and
status-quo, in the model with the directive for the D periods is exactly the same
as for the model without the directive. Maybe little surprisingly, C chooses not
to increase inflation in an attempt to gain better bargaining position by lowering
the status-quo (or vice versa). We will see below that this result is specific to
the two-period version of the model with the directive and does not hold in
general.
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Proceeding to the A periods, under the bargaining protocol without the
directive the equilibrium inflation is

pA,0(x) =


x for x ∈ 〈π∗ − φκ, π∗ + φκ〉
2(π∗ + φκ)− x for x ∈ 〈π∗ + φκ, π∗ + 3φκ〉
π∗ − φκ otherwise

where κ = δpd
1+δpd

. The intuition for the result is the same as above. Note however
that A periods are those when both policy-makers have equal preferences. The
reason why they fail to agree on π∗ which is inflation they would both prefer for
t = 0 is that by doing so they would have to compromise on their bargaining
position for t = 1. And as the bargaining position next period is given by q0

which is by assumption equal to p0, the default policy prevails.
Another thing to note is the fact that the bargaining position matters in the

t = 1 period only if it is a D period. It is easy to confirm κ increases with both,
the probability of D periods and with the discount factor δ. Hence higher is the
pd or δ the larger is the interval over which the default policy determines the
equilibrium one.

In contrast, under the bargaining protocol with the directive equilibrium
inflation is always equal to π∗. The logic behind this result is that in the
A periods policy-makers’ preferences are aligned along the inflation dimension
and as the inflation can differ from the status-quo for the next period, C does
not compromise her bargaining position by offering π∗.

At the same time, by being offered π∗, P is made better of and C will use
this extra room to maneuver to improve her bargaining position for the next
period. Hence provided C cannot offer {π∗, π∗ − φ} which is the best she can
do, she will set q0 so as to make P indifferent between γ̄0 and γ0.

5 Infinite horizon model

This section solves the infinite horizon dynamic bargaining problem for the two
bargaining protocols. We focus on Stationary Markov Perfect Equilibria (S-
MPE) where strategies in a given period depend only on the type of the period
and the default policy for that period, i.e. only on the payoff relevant variables.

For technical reasons we restrict the policy space along any dimension to lie
in the convex compact subset X of R. Hence γt, γ̄t ∈ X2 ⊆ R2. However, as X
can be made arbitrarily large, this assumption is without loss of generality.

Focusing on the S-MPE, we can get rid of the time subscript and to further
simplify the notation, we denote by x ∈ X the default policy for a given period
with the understanding that γ̄ = {x, x} ∈ X2.

For this model, S-MPE will be a combination of several components. For
C, we are looking for four functions, two of them mapping x into the offered
inflation in each period pD(x), pA(x) : X → X and the remaining two mapping
x into the offered status-quo, qD(x), qA(x) : X → X. Formally, we denote C’s
strategy ρC = {pD(x), pA(x), qD(x), qA(x)} : X4 → X4.
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For P , his strategy in each period maps combination of γ̄ and γ into his
vote. As his strategy will differ in D and A periods, the strategy is a mapping
ρP : X8 → {yes,no}.

Notice that any given pair of strategies ρ = {ρC , ρP } for a given x and a
given path of D and A periods generates unique path of implemented inflation
decisions {p0, p1, . . .}. Taking expectations over all possible paths gives contin-
uation value function for each policy-maker who knows x but does not know
whether the next period will be D or A one,

V ρC(x) = E

[ ∞∑
t=0

−δt(pt − π∗ + φID(t))2

]

V ρP (x) = E

[ ∞∑
t=0

−δt(pt − π∗ − φID(t))2

]

where ID(t) is D-period indicator function and the superscript ρ captures de-
pendence on given ρ. Having the continuation value functions we observe those
can be equivalently derived as

V ρC(x) = pd
[
−(pρD(x)− π∗ + φ)2 + δV ρC(qρD(x))

]
+ (1− pd)

[
−(pρA(x)− π∗)2 + δV ρC(qρA(x))

]
V ρP (x) = pd

[
−(pρD(x)− π∗ − φ)2 + δV ρP (qρD(x))

]
+ (1− pd)

[
−(pρA(x)− π∗)2 + δV ρP (qρA(x))

]
.

Finally, we denote by Ai(x) P ’s acceptance set in period i ∈ {A,D} given a
default policy x and strategies ρ by

AρD(x) = {(p, q) ∈ X2| − (p− π∗ − φ)2 + δV ρP (q) ≥ −(x− π∗ − φ)2 + δV ρP (x)}
AρA(x) = {(p, q) ∈ X2| − (p− π∗)2 + δV ρP (q) ≥ −(x− π∗)2 + δV ρP (x)}.

It is immediate that both of the acceptance sets are nonempty and compact.
With this notation, C’s problem can be restated in terms of pair of the usual

Bellman functional equations

UρD(x) = max
{p,q}∈AρD(x)

{−(p− π∗ + φ)2 + δpdU
ρ
D(q) + δ(1− pd)UρA(q)}

UρA(x) = max
{p,q}∈AρA(x)

{−(p− π∗)2 + δpdU
ρ
D(q) + δ(1− pd)UρA(q)}

(2)

and the definition of S-MPE we use is

Definition 1 (Stationary Markov Perfect Equilibrium). A pair of strategies
ρ∗ = {ρ∗C , ρ∗P } constitutes an S-MPE if for all x ∈ X and any period i ∈ {A,D}

1. C’s proposal strategy ρ∗C solves (2)

2. P votes for C’s proposal γ if and only if γ ∈ Aρ
∗

i (x)

3. In the model without the directive, C’s strategies are restricted to offers
{p, q} satisfying p = q.
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Equivalent way to express the requirement of the S-MPE is to say we are
looking for ρ giving rise to V ρC and V ρP such that when C and P maximize their
utility in the current period their optimal behaviour is indeed expressed as ρ. If
we can find such ρ then by the one deviation principle we have an equilibrium.
From here on we focus on the equilibrium strategies and we drop the superscript
ρ whenever the chance of confusion is minimal.

Equilibrium without the directive

Before proceeding further, let us make a weak assumption about the δ and pd
parameters in the model.

Assumption 1. For any pair (δ, pd) let δ2pd(3− 2pd) ≤ 1− δ(1− pd).

Loosely speaking by making this assumption we are ruling out peculiar equi-
libria where C in D periods and for some default policies x offers inflation even
higher than is the current x which goes against her contemporaneous incentives
and she does so only to improve her bargaining position in the future. We regard
this as an unrealistic feature and hence rule it out.

In terms of strictness of the assumption it can be expressed as δ ≤ ϕ(pd)
where ϕ(0) = ϕ(1) = 1 and minpd∈(0,1) ϕ(pd) = 7/9 so that in effect we are
ruling out equilibria where the ‘future looms large’ as δ approaches unity.

To characterize the equilibrium, we first conjecture that C’s offers make
P always indifferent between γ and γ̄ provided C cannot implement her most
preferred policy. Also, intuitively it should be the case that the set of default
policies x for which C brings P to indifference in the A periods should be a
subset of the policies for which C does the same in the D periods. Furthermore,
building on the intuition from the two-period model, there should be a set of
default policies for which the equilibrium offers are constant with respect to x
as C can implement her most preferred policy. With this conjecture and some
guess-work as to what are the appropriate intervals and what C’s most preferred
policy means, P ’s continuation value function can be shown to be

VP (x) =



− 1
1− δ

[
(x− π∗ − φpd)2 + φ2pd(1− pd)

]
for x ∈ 〈π∗ − φδpd, π∗ + 3φδpd〉

− pd
1− δpd

[
(x− π∗ − φ)2 + φ2 δ(1− pd)(1 + 3δpd)

1− δ

]
for x ∈ 〈π∗ − φ, π∗ − φδpd〉 ∪ 〈π∗ + 3φδpd, π∗ + 3φ〉

− φ
2pd

1− δ
(4− 3δ(1− pd))

otherwise.

(3)

The first part of VP applies when C makes P indifferent between γ̄ and γ in
both, D and A periods. The second part applies when C makes P indifferent
only in D periods but implements her most preferred policy in the A periods.
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Finally, the third part applies when C can implement her most preferred policy
in both, D and A periods. Notice also that VP is continuous and differentiable
on X except at the break points. With VP pinned down, it can be shown that
the equilibrium takes the following form.

Proposition 1 (S-MPE without the directive). Under the assumption 1 the
equilibrium exists, is essentially unique, equilibrium offers are

pD(x) = qD(x) = max {min{z ∈ X|z ∈ AD(x)}, π∗ − φ}
pA(x) = qA(x) = max {min{z ∈ X|z ∈ AA(x)}, π∗ − φδpd}

and P always accepts.

Proof. See appendix

In words, C always offers the lowest inflation she possibly can for both types
of periods, provided she cannot reach her most preferred policy, which is π∗−φ
in D periods and π∗ − φδpd in A periods.

The strategy of the proof is following. We conjecture the VP given above
and the structure of the equilibrium given in proposition 1. Having done that,
we derive C’s continuation value function VC and confirm she indeed want’s to
implement the minimum of P ’s acceptance sets when her overall optimum is
not available.

To prove uniqueness, we take the P ’s acceptance correspondences AD and
AA along with the VP given in (3) and show that with those solution to (2) is
unique using the extended version of the theorem 4.6 from Stokey and Lucas
(1989) which we also prove. The essential adjective then means that we are
proving uniqueness in the class of equilibria where P is brought to indifference
whenever C cannot implement her optimal policy. However, we view this as a
reasonable requirement on the equilibrium of the game where there is a conflict
of interest between the two players.

To see how the equilibrium looks like in a graphical form, figure 1 shows
particular parametrization for π∗ = 2, φ = 1, δ = 0.5, pd = 0.5. For all the
equilibria of the model, the pA(x) offer policy looks exactly the same as on
the figure. However, there are some differences regarding the shape of the
pD(x) function. What is common to all of them is the constant and then linear
increasing part for low values of x. Nevertheless, the x for which pD(x) reaches
maximum in general differs depending on the parameters and the ‘right’ part of
the pD(x) is not necessarily monotone or even continuous. One common feature
is that it eventually decreases to π∗ − φ where it becomes a constant function
again.

In order to discuss the bargaining outcomes generated by the equilibrium,
we find it helpful to define a set of x which, when reached, remains the offered
and hence default policy for ever. We call this set of jointly absorbing default
polices and define it along with the set of efficient default policies in the following
definition.
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Figure 1: Equilibrium policy without directive
π∗ = 2, φ = 1, δ = 0.5, pd = 0.5

x

p

π∗ + φ

π∗

π∗ − φ

A periods

D periods

Definition 2 (Set of jointly absorbing states and set of efficient states).
A set J ⊆ X defined as

J = {x ∈ X|qD(x) = qA(x) = x}

is called set of jointly absorbing states (jointly absorbing set).
A set JE ⊆ X defined as

JE = {x ∈ X|pA(x) = π∗}

is called set of efficient states (efficient set).

The rationale behind the definition of jointly absorbing set is that once the
bargaining reaches x ∈ J the resulting inflation and status-quo policy decisions
are constant forever for any path of D and A periods. One interpretation of
J is that it is the set of default policies for which the bargaining outcomes are
irresponsive to the changing preferences of the policy-makers. However, it needs
to be stressed that such an interpretation applies only to the model without the
directive as qD(x) = qA(x) implies pD(x) = pA(x) which needs not hold in the
model with the directive.

The rationale behind the notion of inefficient X \ JE set is that for any
x ∈ X \JE the policy-makers fail to agree on their current-period most preferred
policy π∗ due to their concerns about their bargaining position in the future.
If in the A period with the default policy x they could sign a binding contract
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specifying that the next period default policy is x but today’s inflation is π∗,
both of them would be made better of.

Discussing the inflation outcomes is further complicated by the fact that
those will in general depend on x with which bargaining starts and on the given
path of A and D periods which is stochastic. Nevertheless, following proposition
captures the key features.

Proposition 2 (Policy outcomes without the directive).

1. For any x ∈ X, the sequence of inflation decisions generated by x and any
path of D and A periods reaches J in finite number of periods.

2. J has measure 2φδpd.

3. JE has measure zero.

Proof. See appendix

Recalling the equilibrium in figure 1 the intuition behind the result is straight-
forward. For any x in the A period inflation reaches J immediately and hence
can stay out of J only for the path of D periods. And as the probability of
n consecutive D periods goes to zero, inflation eventually falls into J . Part 2
of the proposition is immediately apparent from the figure realizing that the
minimum of pA(x) is at π∗ − φδpd and its maximum at π∗ + φδpd. Finally the
last part is immediate from the picture.

What the proposition 2 is telling us is that in a S-MPE of the bargaining
game without the directive, the inflation outcomes eventually become constant
across periods at the level that does not necessarily corresponds to the inflation
preferred by both policy-makers in the A periods.

Equilibrium with the directive

We now show how the bargaining outcomes change when C’s offers are not
restricted to those with equal inflation and status-quo. The first result we
prove is that inflation in A periods is equal to π∗ for any default policy. The
logic behind the result is that since in the A periods the preferences of the
policy-makers are aligned along the inflation dimension, there is no reason they
should not be able to reach an agreement on the inflation set. And as changing
inflation does not necessarily changes the status-quo for the next period, there
is no trade-off for C to be made. The intuition is confirmed by the proposition.

Proposition 3 (pA(x) with the directive). Assume an equilibrium with the
directive exists. Then for any x ∈ X

pA(x) = π∗

Proof. See appendix
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Having established this result we are interested in the existence of the equi-
librium for the model with the directive. Only then we can be sure that the
bargaining protocol has the strong impact on the bargaining outcomes as sug-
gested. Differently from the model without the directive where the existence
followed by construction, situation is complicated by the fact that closed form
solutions for the model with the directive are hard to obtain.

To establish the existence result, it is helpful first to pin down the VP function
and hence the shape of the acceptance correspondences AD and AA. Guided
by the intuition, there should be three cases. First, for really high or really
low default policies x, C should be able to implement her most preferred policy
since it makes P still better off. Second, for the default policies that fall into the
region of ‘full conflict’ between C and P , C by maximizing her utility should
bring P to indifference between the default policy and her offer both in A and
D periods. Finally, for the intermediate cases, the conflict between C and P
should prevail in D periods but not in A periods. The intuition indeed turns
out to be correct and allows us to pin down the VP function.

Proposition 4 (VP for the model with the directive). Assume an equilibrium
with the directive exists. Then

VP (x) =



− 1
1− δ

[
(x− π∗ − φpd)2 + φ2pd(1− pd)

]
for x ∈ 〈π∗ + φδpd − κ, π∗ + φδpd + κ〉

− pd
1− δpd

[
(x− π∗ − φ)2 + φ2 4δ(1− pd)

1− δ

]
for x ∈ 〈π∗ − φ, π∗ + φδpd − κ〉 ∪ 〈π∗ + φδpd + κ, π∗ + 3φ〉

−4φ2pd
1− δ

otherwise

with κ = φ
√
δpd(3 + δpd).

Proof. See appendix

Having established the shape of the VP function, we are able to prove the
upper-hemicontinuity of the acceptance correspondences for both types of peri-
ods. With this result we can finally prove existence of the equilibrium.

Proposition 5 (S-MPE with the directive). The equilibrium in the model with
the directive exists and is essentially unique.

Proof. See appendix

The idea of the proof is following. With the VP given in proposition 4
we prove the upper-hemicontinuity of the acceptance correspondences AD and
AA which again allows us to use the theorem used to prove the proposition 1.
The essential uniqueness part comes from the fact that we are able to prove
uniqueness of the resulting VC function not of the resulting equilibrium offers.
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Indeed when proving the proposition 3 we have shown that for x ∈ X \
(π∗ − φ, π∗ + 3φ) the equilibrium offers are qD(x) = z and qA(x) = z′ where
z, z′ ∈ X \ (π∗ − φ, π∗ + 3φ). This somewhat complicates the characterization
of J and JE sets. However we are able to show the following result.

Proposition 6 (Policy outcomes with the directive).

1. J has at most the same measure as X \ (π∗ − φ, π∗ + 3φ).

2. Subset of J where pD(x) = pA(x) has measure zero.

3. JE has the same measure as X.

Proof. See appendix

The most remarkable implication of the proposition 6 is the fact that the set
of efficient states JE is equal to the whole policy space X. We take this fact as
an evidence of consensus building potential of the bargaining protocol with the
directive.

Figure 2: Equilibrium inflation with directive
π∗ = 2, φ = 1, δ = 0.5, pd = 0.5

x

p

π∗ + φ

π∗

π∗ − φ

A periods

D periods

To see how the equilibrium offers look like, we next turn to their numerical
estimation (see appendix for the details). We chose this route as the closed form
solution to the C’s optimization problem turns rather challenging to obtain.
Figure 2 presents numerical estimation of the inflation proposals and figure 3
presents numerical estimation of the status-quo proposals. Where multiple offers
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Figure 3: Equilibrium status-quo with directive
π∗ = 2, φ = 1, δ = 0.5, pd = 0.5
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π∗ + φ

π∗

π∗ − φ

A periods

D periods

solve C’s optimization problem we simply choose one of the optimal values, in
practice always π∗ − φ. This is the case for the constant parts of the figure 3.

Looking at the figures 2 and 3 it is not immediately apparent whether the
bargaining ever reaches a point where it would remain ‘stable’. By the propo-
sition 2 for the model without the directive the stable set J is reached in the
finite number of periods. For the model with the directive we are not able to
prove similar result as we do not have a closed form solution for the equilibrium
offers.

To shed a light on this question we generated 10.000 one hundred period
long random paths of A and D periods. For each path, we derived a last period
status-quo offer by C as a function of the initial status-quo. Averaging over all
the 10.000 paths gives the figure 4 which also depicts the equilibrium status-quo
offers qD(x) and qA(x).

Looking at the figure, for the default policies x for which qD(x) < π∗ and
qA(x) < π∗ holds, the bargaining over the long term converges to the status-
quo of π∗ − φ. This is the case as C is able to improve on his bargaining
position in A periods as she is happy to offer inflation equal to π∗. By offering
inflation π∗, C makes P better off and uses this to offer status-quo that suits
her preferences which means steering the status-quo in the direction of the set
X \ (π∗ − φ, π∗ + 3φ). This in hand implies that the constant part of the
line in the figure 4 should be interpreted as π∗ − φ or any other status-quo in
X \ (π∗ − φ, π∗ + 3φ). In terms of inflation outcomes this implies that in the
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Figure 4: Long-run status-quo with the directive
average over 10.000 random 100 period long paths

π∗ = 2, φ = 1, δ = 0.5, pd = 0.5

x

q

π∗ + φ

π∗

π∗ − φ

long run inflation offers will be π∗−φ in the D periods and π∗ in the A periods.
The convergence to π∗ − φ also means that C gives up less of a bargaining

position in D periods than it gains in the A periods. Intuitively, C gives up
some of her bargaining position in the D periods as she trades-off the cost of
doing so against the benefit of being able to offer inflation that is closer to her
preferred point π∗−φ. And she is happy to do so as she knows that she will be
able to regain her bargaining position in the A period.

Notice also that for the status-quo policy π∗ − φ, C becomes dictator in
the committee as she is always able to implement policies that fully reflect her
preferences. We note similarity of this result with often mentioned dominant
position of Chairman Greenspan in the FOMC (see for example Chappell et al.
(2005) chapter 8). Also noteworthy is the fact that C has to build up the
dominant position only gradually over time. More specifically, C improves on
her bargaining position in every A period. But until the status-quo reaches
π∗−φ, she still has to take into account preferences of other committee members.

For the default policies x for which qD(x) > π∗ and qA(x) > π∗ holds,
the status-quo converges to π∗. This is so as C is never able or willing to
implement policy with status-quo that would start the convergent process to
π∗ − φ discussed above. In terms of policy outcomes consulting figure 2 shows
that in the long term the inflation will be equal to π∗ not only in A periods but
also in D periods despite the diverging preferences of the committee members
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in the D periods.
Lastly for the default policies x for which qD(x) > π∗ and qA(x) < π∗ the

long term outcome of the bargaining depends crucially on the first period. If
the bargaining starts with A period, C is able to start the convergent process
towards status-quo π∗ − φ and eventually becomes dictator in the committee.
Should the bargaining start with a D period, C’s offer starts the convergence to
status-quo π∗ and the committee eventually reaches a position when it imple-
ments inflation equal to π∗ in both types of periods. The line between π∗ and
π∗−φ then reflects the fact that proportion pd of the paths eventually converges
to π∗ − φ whereas the remaining paths converge to π∗.

Notice the strong path dependency displayed by the model. For some de-
fault policies x the committee eventually becomes dominated by its chairman.
For some default policies the committee becomes ‘consensual’ in that the infla-
tion implemented in a disagreement periods is midway between the inflations
preferred by its members. Finally, for some default policies the first period
plays a crucial role and determines whether the committee becomes chairman
dominated or consensual.

Multi-member committee and further comments

One obvious objection to the model presented in this paper is the fact that
typical monetary committee is composed of more than two members. What
we want to know is whether the results presented remain valid when we add
another members along the C and P .

However, there are many ways how to expand the two person committee
in terms of the resulting preference structures. For this reason we focus on a
relatively simple committee expansion process we call median preserving and
define as follows.

Definition 3 (Median preserving committee expansion). We say a committee
is expanded in the median preserving way if in the initial step member with the
preference parameter φ0 > φ is added and in arbitrary number N ′ of subsequent
steps each expansion n ≤ N ′ adds pair of members with φn,1 > φ and φn,2 < φ.

In words, in the first step of the expansion we add a member who is more
extreme than P in that his preference parameter φ0 satisfies φ0 > φ. Notice this
steps makes P the ‘true’ median member as the number of committee members
becomes odd.

For any number of subsequent expansion steps, we then require members to
be added in pairs in each step n in order to preserve the odd-member feature
and restrict the additional members to have preference parameters φn,1 and
φn,2 that satisfy φn,1 > φ > φn,2. It is easy to confirm that P remains median
member after any number of such expansions and final size of the committee is
3 + 2N ′ = N .

Next we need to rule out equilibria which possibly arise due to the committee
members voting against their preferences as they realize they are not pivotal.
Following Baron and Kalai (1993) we restrict attention to stage-undominated
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voting strategies that for all members n ∈ N , all periods i ∈ {A,D}, all default
policies x ∈ X and all proposals γ ∈ X2 satisfy

n votes yes for γ ⇔ γ ∈ Ai,n(x).

With the preliminaries established, we are able to prove the following propo-
sition asserting that the results presented so far can be equally applied to any
larger committee.

Proposition 7 (Committee with more than 2 members). Expanding the com-
mittee of the models above in a median preserving way and assuming members
use stage-undominated voting strategies leaves all the results unchanged.

Proof. See appendix

Another interesting question arises from comparison of the two bargaining
structures. Assume that C and P , before starting the game analyzed in this
paper and most importantly before the first default policy is determined, have
an option to choose between the bargaining protocols. Would they prefer either
of the protocols and does it depend on their believes about the first default
policy?

Figure 5: Equilibrium value functions
π∗ = 2, φ = 1, δ = 0.5, pd = 0.5

0
π∗ − φ π∗ + φ π∗ + 3φ

VC
VC

VP

VPwith the directive

without the directive
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Figure 5 illustrates the answer to this question. It depicts value functions
of both policy-makers for the two bargaining protocols. All the functions are
based on the analytical results except for the VC function in the model with the
directive which comes from the simulation exercise.

Note that the first intuition that the bargaining protocol with the directive
would be preferred as it relaxes the constraint on the C’s optimization problem
is misleading as it does not take into account change in P ’s strategic behaviour.
This argument would indeed be correct if we could prove that the P ’s acceptance
sets without the directive are subsets of the acceptance sets with the directive.

However, this turns out not to be true and it is relatively easy to construct
examples where P ’s acceptance sets without the directive include policies which
are not included in the acceptance sets without the directive. It follows C might
be worse off for some default policies with the directive. Hence the bargaining
protocol she prefers will in general depend on her believes about the initial
default policy.

For P , the question is less complicated, not least as we have explicit expres-
sions for VP . It turns out P (weakly) prefers the bargaining protocol without
the directive.

The intuition behind the result is that for the default policies for which he
is made indifferent between γ and γ̄, his continuation value is equal under the
two bargaining protocols. At the same time for the default policies for which
C is able to extract all the bargaining power over the long periods under the
bargaining with the directive, P prefers the bargaining protocol without the
directive. This is so because under this bargaining protocol he retains some
influence over the enacted policies which then reflect, at least to some extent,
his preferences.

Finally we were interested whether the model with the directive generates
bargaining outcomes mimicking the real world ones. More specifically, we focus
on one of the arguments used to support the notion that the directive serves
consensus building role. As Thornton and Wheelock (2000) note, FOMC meet-
ings during which target federal funds rate remains unchanged predominantly
adopt asymmetric directive. At the same time symmetric directive is usually
adopted during meetings when the rate is changed.

To check whether our model is able to deliver the same prediction, we gen-
erated 100.000 random two period long paths each of them for random initial
default policy drawn from the interval 〈π∗ − φ, π∗ + φ〉. For each path, we first
recorded the inflation and status quo adopted in the first period, p1 and q1. We
then moved to the second period for which the default policy was q1 and we
recorded resulting inflation and status-quo, p2 and q2.

Having done that, we coded second period on each path according to two
criteria. First criterium was whether change in inflation compared to the first
period took place. Periods which satisfied |p2 − p1| ≤ ε were coded as no
change ones. Second criterium was whether the committee adopted symmetric
directive or not. In this respect, periods which satisfied |q2−p2| ≤ ε were coded
as symmetric. Table 1 gives results of our exercise along with those taken from
Thornton and Wheelock (2000) page 10.
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Table 1: Ratio of asymmetric to symmetric directives

rate change no rate change
Thornton and Wheelock 0.60 1.71
Model ≈ 0.64 ≈ 1.26

With ε chosen to match the ratio for the change meetings, the model some-
what under-predicts number of asymmetric directives in the no change meetings
(≈ sign is meant to highlight that the results slightly differ for each run). Nev-
ertheless, it correctly generates mostly asymmetric directives for the change and
mostly symmetric directives for the no change meetings. However, what is not
apparent from the table is that the model generates too few no change meetings
in general, but this is not surprising given that the FOMC usually decides in a
discrete steps whereas the policy space the model assumes is continuous.

6 Conclusion

· · ·
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Appendices

A1 Proof of proposition 1

Preliminaries

To proof the proposition 1 we are forced to split the equilibria of the model
without the directive into four distinct cases depending on parameters δ and pd.
However, the logic of the proof is always the same. We state the equilibrium
offers and confirm they correspond to those given in the proposition using the
shape of the induced VP function. We then confirm by investigating the shape
of induced VC that C indeed wants to implement the minimum of the P ’s
acceptance set or her overall optimum. Throughout the proof we always assume
assumption 1 holds.

Despite the logic of the proof being rather straightforward, the proof itself
is rather lengthy and algebra intensive. Striving to keep its length at minimum,
we sometimes omit proofs of purely algebraic results but always indicate how
those can be shown.

Throughout the proof, we often refer to C in D periods as to CD and
similarly for P (PD) and by analogy in A periods to CA and PA respectively.
To save on notation we denote current utility of the policy makers by

fCD(x) = −(x− π∗ + φ)2

fCA(x) = −(x− π∗)2

fPD(x) = −(x− π∗ − φ)2

fPA(x) = −(x− π∗)2

and the overall utility by

UCD(x) = fCD(x) + δVC(x)
UCA(x) = fCA(x) + δVC(x)

UPD(x) = fPD(x) + δVP (x)
UPA(x) = fPA(x) + δVP (x).

Throughout the proof we are forced to work with series of intervals in the
policy space. Those are always denoted by Ii and are always closed (except
where explicitly indicated) and convex subsets of the policy space. The upper
border of Ii is then denoted by IUi and lower border by ILi .

Many of the functions in the proof are defined piecewise. If this is the case
then we use notation f Ii(x) for function f(x) constrained to the appropriate
interval. Derivatives are often denoted by primes when no confusion as to with
respect to which variable the derivative is being taken is imminent.

It will become apparent that many of the functions we work with are differ-
entiable only in the interior of the intervals but not at the point where the two
intervals meet. Taking general f(x), f ′(IUi ) will often fail to exist as f(x) has
kink at IUi . If this is the case then f ′Ii(IUi ) will always denote left derivative,
i.e. derivative as x→ IUi from below, and f ′Ii(ILi ) will denote right derivative,
i.e. derivative as x→ ILi from above.

It is helpful first to establish following lemmas.
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Lemma 1.

U ′CD(x) ≥ 0⇒ U ′CA(x) ≥ 0
U ′CD(x) ≤ 0⇐ U ′CA(x) ≤ 0

U ′PD(x) ≥ 0⇐ U ′PA(x) ≥ 0
U ′PD(x) ≤ 0⇒ U ′PA(x) ≤ 0

Proof. Lemma follows from the readily verifiable facts that f ′CA(x) > f ′CD(x)
and f ′PA(x) < f ′PD(x). �

Lemma 2. Let h(x) and k(x) be two real valued continuously differentiable
functions defined on 〈t− r, t〉 and 〈t, t+ r〉 respectively, for some t, t, r ∈ R and
r > 0. Assume k(t) = h(t) and that the first derivative of the functions satisfies
k′(t+ x) ≤ −h′(t− x) for all positive x ≤ r. Then k(t+ r) ≤ h(t− r).

Proof. Integrating the derivative inequality in the lemma with respect to x from
0 to r gives ∫ r

0

k′(t+ z)dz ≤ −
∫ r

0

h′(t− z)dz

k(t+ r)− k(t) ≤ h(t− r)− h(t)
k(t+ r) ≤ h(t− r)

�

Lemma 3. Define

z(x) = π∗+φ(1−δ(1−pd))−

√
1− δ

1− δpd
(x− π∗ − φ)2 + φ2δ(1− pd)

(
4δ2p2

d

1− δpd
− (1− δ)

)
.

Then

sgn[z(x)′] = sgn[π∗ + φ− x]

sgn[z(x)′′] = sgn[−(4δ2p2
d − (1− δ)(1− δpd))].

Proof. Denote the term in the square root of z(x) by T (x). Then

z(x)′ = − 1√
T (x)

1− δ
1− δpd

(x− π∗ − φ)

z(x)′′ = − 1
T (x)3/2

1− δ
1− δpd

φ2δ(1− pd)(4δ2p2
d − (1− δ)(1− δpd)).

�

Next we give explicit formulas for the continuation value functions of the
two policy-makers used throughout the proof. As already mentioned, both of
the functions are defined piecewise on the different Ii intervals, but we leave
the specific definition of the intervals for later when we will show that in the
equilibrium induced continuation value function of C can be put together from
the following.
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V I1C (x) =V I12C (x) = −1− pd
1− δ

φ2δpd

V I2C (x) =V I5C (x) = − pd
1− δpd

[
(x− π∗ + φ)2 + φ2 δ(1− pd)(1− δpd)

1− δ

]
V I3C (x) =− 1

1− δ
[
(x− π∗ + φpd)2 + φ2pd(1− pd)

]
V I4C (x) =V I3C (x) +

8(1− pd)δpd
(1− δ)(1− δpd)

[φ(x− π∗)− φ2δpd]

V I6C (x) =V I11C (x) = − pd
1− δpd

[
(π∗ + 3φ− x)2 + φ2 δ(1− pd)(1− δpd)

1− δ

]
V I7C (x) =pd

[
(2(π∗ + φ(1− δ(1− pd)))− x− π∗ + φ)2 + δV I4C (2(π∗ + φ(1− δ(1− pd)))− x)

]
(1− pd)

[
(2(π∗ + φδpd)− x− π∗)2 + δV I3C (2(π∗ + φδpd)− x)

]
V I8C (x) =pd

[
(2(π∗ + φ(1− δ(1− pd)))− x− π∗ + φ)2 + δV I3C (2(π∗ + φ(1− δ(1− pd)))− x)

]
(1− pd)

[
(2(π∗ + φδpd)− x− π∗)2 + δV I3C (2(π∗ + φδpd)− x)

]
V I9C (x) =pd

[
−(z(x)− π∗ + φ)2 + δV I4C (z(x))

]
+ (1− pd)

[
−(−φδpd)2 + δV I3C (π∗ − φδpd)

]
V I10C (x) =pd

[
−(z(x)− π∗ + φ)2 + δV I3C (z(x))

]
+ (1− pd)

[
−(−φδpd)2 + δV I3C (π∗ − φδpd)

]
Likewise, P ’s continuation value function in the equilibrium will be put

together from the following functions.

V I3P (x) =− 1
1− δ

[
(x− π∗ − φpd)2 + φ2pd(1− pd)

]
= V I4P (x) = V I7P (x) = V I8P (x)

V I2P (x) =− pd
1− δpd

[
(x− π∗ − φ)2 + φ2 δ(1− pd)(1 + 3δpd)

1− δ

]
= V I5P (x) = V I6P (x) = V I9P (x) = V I10P (x) = V I11P (x)

V I1P (x) =V I12P (x) = − φ
2pd

1− δ
(4− 3δ(1− pd))

At the time being use of 12 different Ii’s might seem redundant, but as will
become apparent the fact that the value functions are identical on some intervals
is a coincidence. Indeed, they will be induced by parts of the equilibrium that
are different in nature.

Having the VP function we can also explain a rationale behind the z(x) from
lemma 3. Looking at the VP it is apparent that it consists of two quadratic
equations which apply at the different Ii intervals. The z(x) function then
allows us to go from one of the quadratic equations to the other. In other
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words, z(x) ensures VP (x) = VP (z(x)). More specifically, as the proposition
claims that C implements policy corresponding to the minimal accepted one,
z(x) gives us lower border of the acceptance set for some default policy x.

We sometimes need to use an inverse of z(x) as well. Formally speaking,
as z(x) is not monotone, z−1(x) is not well defined. However, it is apparent
there are exactly two solutions x to the equation k = z(x) for a given constant
k. Taking the larger of the two, we can define inverse of the function z(x) as
z−1(x) = {max{y : x = z(y)}}.

Case 1: Equilibrium for δ ≤ 1
1+2pd

For δ ≤ 1
1+2pd

the equilibrium offers are

pA(x) =


π∗ − φδpd for x ∈ I1 ∪ I2 ∪ I5 ∪ I6 ∪ I9 ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3
2(π∗ + φδpd)− x for x ∈ I4

pD(x) =


π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4 ∪ I5
2(π∗ + φ)− x for x ∈ I6 ∪ I11

z(x) for x ∈ I9 ∪ I10

where

I1 = 〈x−, π∗ − φ〉
I2 = 〈π∗ − φ, π∗ − φδpd〉
I3 = 〈π∗ − φδpd, π∗ + φδpd〉
I4 = 〈π∗ + φδpd, π

∗ + 3φδpd〉
I5 = 〈π∗ + 3φδpd, π∗ + φ〉

I6 = 〈π∗ + φ, π∗ + φ(2− 3δpd)〉
I9 = 〈π∗ + φ(2− 3δpd), τ+〉
I10 = 〈τ+, π∗ + φ(2 + δpd)〉
I11 = 〈π∗ + φ(2 + δpd), π∗ + 3φ〉
I12 = 〈π∗ + 3φ, x+〉

where τ+ = π∗+φ+φ
√

(1− δpd)2 − 4δ3p2d(1−pd)

1−δ (τ− to be used later is defined
analogously with the term in the square root subtracted) and x− and x+ are
respectively lower and upper border of the policy space X.

To see the term in the square root of τ+ is always positive, substitute in δ =
1/(1 + 2pd) which gives a positive expression. Then differentiating the original
expression with respect to δ one gets an expression which can be regarded as
cubic equation in δ. Upon solving it has one real root and the derivative is
negative below the root. As the root is always higher than unity, it follows the
original expression has to be positive.

It is straightforward to show that the equilibrium offers induce the continu-
ation value functions given above on the appropriate Ii intervals and that both
VC and VP are continuous everywhere and differentiable everywhere except at
the borders of the Ii intervals. Next we need to pin down the shape of UPA and
UPD functions.
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claim 1 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and
decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 and decreasing
otherwise. UPA has global maximum at π∗+φδpd, UPD has global maximum at
π∗ + φ and both functions are quasi-concave.

Proof. It is straightforward to show that UPA is increasing (and hence UPD as
well by lemma 1) on I1 ∪ I2 ∪ I3. Similarly UPD is decreasing (and hence UPA
by the same lemma) on I6 ∪ I9 ∪ I10 ∪ I11 ∪ I12. The remaining two intervals, I4
and I5, are easy to show as well. It follows UPA has to have global maximum at
π∗ + φδpd which is border of I3 with I4 and UPD has to have global maximum
at π∗ + φ which is border of I5 with I6. Quasi-concavity then follows. �

Next two claims outline the shape of P ’s acceptance sets.

claim 2 (Shape of AA(x)). Let x be the default policy. Then

1. if x ∈ I3 then AA(x) = {p : x ≤ p∧p ≤ x′} with x′ = 2(π∗+φδpd)−x ∈ I4

2. if x ∈ I4 then AA(x) = {p : x′ ≤ p∧p ≤ x} with x′ = 2(π∗+φδpd)−x ∈ I3

3. if x /∈ I3 ∪ I4 then π∗ − φδpd ∈ AA(x).

Proof. Notice UPA is symmetric around π∗+φδpd which is its global maximum
on I3 ∪ I4. Moreover for any x ∈ I3, UPA is increasing up to x and for any
x ∈ I4, UPA is decreasing from x on. Hence the first part follows. Similar
argument proves the second part.

To see the third part, notice UPA(IL3 ) = UPA(IU4 ) and IL3 = π∗−φδpd. The
third part then follows by the same argument as in the preceding paragraph
about the increasing and decreasing parts of UPA. �

claim 3 (Shape of AD(x)). Let x be the default policy. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈ I11

3. if x ∈ I3∪I4 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = z−1(x) ∈ I9∪I10

4. if x ∈ I5 then AD(x) = {p : x ≤ p∧ p ≤ x′} where x′ = 2(π∗+φ)− x ∈ I6

5. if x ∈ I6 then AD(x) = {p : x′ ≤ p∧ p ≤ x} where x′ = 2(π∗+φ)− x ∈ I5

6. if x ∈ I9∪ I10 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = z(x) ∈ I3∪ I4

7. if x ∈ I11 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈ I2.

Proof. All the parts below use the fact that for x ≤ π∗ + φ, UPD is increasing
up to x and for x ≥ π∗ + φ, UPD is decreasing from x on. Also convexity of
AD(x) for given x follows from quasi-concavity of UPD.

For part one, notice UPD(IU1 ) = UPD(IL12) and IU1 = π∗ − φ which along
with the argument in the preceding paragraph gives the result.
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For part two, notice UPD is symmetric around π∗ + φ for x ∈ I2 ∪ I11. This
also proves part seven.

For part three, by quasi-concavity of UPD and the fact that UPD has global
maximum at π∗ + φ there must exist upper border of the acceptance set which
satisfies x′ ≥ π∗ + φ. It is easy to confirm x′ ∈ I9 ∪ I10 and that x′ has to solve
x = z(x′), i.e. x′ = z−1(x).

For part four, notice UPD is symmetric around π∗+φ for x ∈ I5∪ I6. Hence
the fourth part follows. This also proves part five.

For part six, we are looking for x′ which solves UPD(x) = UPD(x′) with
x ∈ I9 ∪ I10. It is easy to confirm x′ = z(x) ∈ I3 ∪ I4 is the solution to this
equation. �

Following claim gives the shape UCD and UCA functions.

claim 4 (Shape of UCA and UCD).

1. UCA is increasing on I1 ∪ I2 and decreasing on I3 ∪ I5 ∪ I6 ∪ I10 ∪ I11 ∪ I12

2. UCD is increasing on I1 and decreasing on I2∪I3∪I4∪I5∪I6∪I10∪I11∪I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗ + φδpd)− x ∈ I4

4. UCA(π∗ − φδpd) ≥ maxx∈I9 UCA(x)

5. UCD(z(x)) ≥ UCD(x′) ∀x′ ∈ 〈IL9 , x〉 given x ∈ I9

6. UCA has global maximum at π∗ − φδpd and UCD at π∗ − φ.

Proof. The first part is straightforward given the continuation value functions
above, except for I10. To establish U I10CA is decreasing, first note

V ′′I10C (x) = pdz(x)′′
[
U ′I3CD(z(x))

]
− pd

2
1− δ

[z(x)′]2.

Sign of z(x)′′ by lemma 3 depends on sign of 4δ2p2
d − (1 − δ)(1 − δpd) which

is negative for δ ≤ 1/(1 + 2pd) and hence z(x)′′ is positive. Sign of U ′I3CD(z(x))
is negative by the part two of this claim and the last term is negative so the
V ′′I10C (x) is negative. It follows U ′′I10CA is concave so if we can establish that
U ′I10CA (IL10) is negative the claim follows.

Evaluating U ′I10CA (x) at IL10 = τ+ gives

U ′I10CA (τ+) = −2φ
[
1 +

(
τ+ − π∗ − φ

φ

)(
1− δ − 2δpd(1− δ(1− pd))

(1− δ)(1− δpd)

)]
where the term in the brackets is positive. To see this, note that the last term
in the equation 1− δ− 2δpd(1− δ(1− pd)) > 0. This can be seen regarding the
expression as a quadratic equation in δ. It is negative between the roots. One
of the roots is higher than unity and the second one is higher than 1/(1 + 2pd).
This establishes the first part.

30



For the second part, it is again straightforward to establish most of the
results. For I10 the claim follows from the part one of this claim and lemma 1
and for I4 the claim follows by assumption 1.

The third part follows readily from the derivatives of UCA on I3 and I4 using
lemma 2 which can be used as I3 and I4 have the same width.

To establish the fourth part where we cannot use the derivative argument
as UCA may have local maximum on I9, first note

V ′I9C (x) = pdz(x)′
[
U ′I4CD(z(x))

]
which by lemma 3 and part two of this claim is positive. Furthermore fCA is
decreasing on I9. Using inequality maxx f(x) + maxx g(x) ≥ maxx f(x) + g(x)
we can derive upper bound on U I9CA as we know the maxima of the f I9CA and V I9C
functions.

The upper bound is given by

fCA(IL9 ) + δV I9C (IU9 ) ≥ max
x∈I9

U I9CA(x)

and we need to show it is lower than UCA(π∗ − φδpd). Some algebra gives

1− 3δpd + 3δ2p2
d +

δ3p3
d

1− δ
≥ 0

which holds. To see this, we can disregard the last term in the expression which
is positive. Regarding the remaining as a quadratic equation in δ gives pair of
roots both of which are complex and it is easy to confirm the expression has to
be positive.

The fifth part is indeed a crux of the proof as UCD may have local maxima
on I9. First note that if we prove UCD(z(x)) ≥ UCD(x) ∀x ∈ I9 then we are
done by the fact the UCD is decreasing on I4 and z(x) ∈ I4 ∀x ∈ I9.

To start, we note the relevant parts of the VC function can be alternatively
expressed as

V I9C (x) =pd[fCD(z(x)) + δV I4C (z(x))]

+ (1− pd)[fCA(π∗ − φδpd) + δV I3C (π∗ − φδpd)]
V I4C (x) =pd[fCD(x) + δV I4C (x)]

+ (1− pd)[fCA(2(π∗ + φδpd)− x) + δV I3C (2(π∗ + φδpd)− x)]

which upon substitution into UCD(z(x)) − UCD(x) greatly simplifies the al-
gebra as the first square brackets disappear. Nevertheless, some lengthy and
uninstructive algebra finally gives

UCD(z(x))− UCD(x) =

4φ
[
(x− π∗)− 1− δ − δ2pd + δ2p2

d

1− δ
(z(x)− π∗)− 3φδ3p2

d(1− pd)
1− δ

]
.

31



It is easy to confirm this expression is positive for x = IL9 . Taking the derivative
with respect to x then gives

[UCD(z(x))− UCD(x)]′ = 4φ
[
1− 1− δ − δ2pd + δ2p2

d

1− δ
z(x)′

]
which is positive. To see this notice 1− δ− δ2pd + δ2p2

d > 0 for δ ≤ 1/(1 + 2pd)
and z(x)′ is negative by lemma 3. This proves the fifth part. Sixth part is then
direct consequence of the above. �

It is now easy to confirm the specified offers are indeed an equilibrium and
can be written in a way used in the proposition 1.

By claim 4, CA either implements her global maximum π∗ − φδpd or min-
imum of AA(x). This follows from the shape of AA given in claim 2 which
implies that if π∗ − φδpd /∈ AA(x) for some x then AA(x) ∈ I3 ∪ I4.

For CD, the best option is when the global maximum π∗ − φ is available.
If she cannot implement her global optimum, then the lowest possible policy
is implemented. This follows directly from claim 4 where the only problematic
interval is I9. But in claim 3 we have shown that for x ∈ I4 the acceptance
set takes the form 〈x, z−1(x)〉 and for x ∈ I9 the acceptance set takes the form
〈z(x), x〉. But then by part five of claim 4, CD implements as low policy as
possible. This concludes the proof of case 1.

Case 2: Equilibrium for δ ≥ 1
1+2pd

and 4δ2p2
d−(1−δ)(1−δpd) ≤ 0

For δ ≤ 1
1+2pd

and 4δ2p2
d − (1− δ)(1− δpd) ≤ 0 the equilibrium offers are

pA(x) =


π∗ − φδpd for x ∈ I1 ∪ I2 ∪ I5 ∪ I6 ∪ I9− ∪ I9+ ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3
2(π∗ + φδpd)− x for x ∈ I4 ∪ I7

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4 ∪ I5
2(π∗ + φ(1− δ(1− pd)))− x for x ∈ I7
2(π∗ + φ)− x for x ∈ I6 ∪ I11

z(x) for x ∈ I9− ∪ I9+ ∪ I10

where

I1 = 〈x−, π∗ − φ〉
I2 = 〈π∗ − φ, π∗ − φδpd〉
I3 = 〈π∗ − φδpd, π∗ + φδpd〉
I4 = 〈π∗ + φδpd, π

∗ + φ(1− δ(1− pd))〉
I7 = 〈π∗ + φ(1− δ(1− pd)), π∗ + 3φδpd〉
I9− = 〈π∗ + 3φδpd, τ−1 〉

I5 = (τ−1 , π
∗ + φ〉

I6 = 〈π∗ + φ, τ+
1 )

I9+ = 〈τ+
1 , τ

+〉
I10 = 〈τ+, π∗ + φ(2 + δpd)〉
I11 = 〈π∗ + φ(2 + δpd), π∗ + 3φ〉
I12 = 〈π∗ + 3φ, x+〉
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where as before τ+ = π∗ + φ+ φ
√

(1− δpd)2 − 4δ3p2d(1−pd)

1−δ and τ±1 are defined

as τ−1 = π∗+φ−φ
√

δ(1−pd)
1−δ ((1− δ)(1− δpd)− 4δ2p2

d) and τ+
1 analogously with

the term involving the square root being added.
By condition on this case, the term under the square root in τ±1 is positive.

To see the term in the square root of τ+ is positive, one follows the same
procedure as for case 1 but instead of substituting δ = 1/(1+2pd) one substitutes
condition δ = 1/(1+pd) which is indeed weaker condition than condition defining
case 2, 4δ2p2

d − (1− δ)(1− δpd) ≤ 0.
It is matter of simple algebra to confirm that the equilibrium offers induce

the continuation value functions specified above where I9+ and I9− correspond
to I9. For VP it is easy to show that the function is continuous everywhere
and differentiable everywhere except at the borders of the intervals. For VC it
can be shown that it is differentiable everywhere except at the borders of the
intervals. Regarding continuity, VC is continuous everywhere except at IL5 and
IU6 where it jumps in a discrete manner. This is a direct consequence of the
equilibrium offers not being continuous at the same points with respect to the
default policy x. We first pin down the shape of UPA and UPD.

claim 5 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and
decreasing otherwise. UPD is increasing on I1∪I2∪I3∪I4∪I5∪I9− and decreasing
otherwise. UPA has global maximum at π∗ + φδpd and is quasi-concave. UPD
has two local maxima at π∗ + φ(1− δ(1− pd)) and π∗ + φ the latter of which is
also a global maximum. UPD has one local minimum at π∗ + 3φδpd.

Proof. It is easy to show UPA is increasing (and hence UPD as well by lemma
1) on I1 ∪ I2 ∪ I3. Similarly UPD is decreasing (and hence UPA by the same
lemma) on I7 ∪ I6 ∪ I9+ ∪ I10 ∪ I11 ∪ I12. The remaining three intervals, I4,
I9− and I5, are equally easy. It follows UPA has global maximum at π∗ + φδpd
which is border of I3 with I4 and its quasi-concavity follows. Similarly, UPD
has two local maxima. One at the border of I4 and I7 and the second at the
border of I5 and I6. Also, it follows local minimum has to be at the border of
I7 and I9−. It is easy to show π∗ + φ is the global maximum. �

Next we wish to characterize the acceptance sets. As the shape of the AA
is exactly the same as in claim 2 we do not repeat it here. For the AD we have
the following.

claim 6 (Shape of AD(x)). Let x be the default policy. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈ I11

3. if x ∈ I3∪〈IL4 , π∗+2φ(1−δ(1+pd/2))〉 then AD(x) = {p : x ≤ p∧p ≤ x′}
where x′ = z−1(x) ∈ I9 ∪ I10

4. if x ∈ 〈π∗ + 2φ(1− δ(1 + pd/2)), IU4 〉 then AD(x) = A1
D(x)∪A2

D(x) where
A1
D = {p : x ≤ p ∧ p ≤ x′}, A2

D = {p : x′′ ≤ p ∧ p ≤ x′′′}, x + x′ =
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2(π∗+φ(1− δ(1−pd)), x′′+x′′′ = 2(π∗+φ), x = z(x′′) = z(x′′′), x′ ∈ I7,
x′′ ∈ I9− and x′′′ ∈ I9+

5. if x ∈ I7 then AD(x) = A1
D(x) ∪A2

D(x) where A1
D = {p : x′ ≤ p ∧ p ≤ x},

A2
D = {p : x′′ ≤ p∧ p ≤ x′′′}, x+ x′ = 2(π∗+ φ(1− δ(1− pd)), x′′+ x′′′ =

2(π∗ + φ), x′ = z(x′′) = z(x′′′), x′ ∈ I4, x′′ ∈ I9− and x′′′ ∈ I9+

6. if x ∈ I9− then AD(x) = A1
D(x) ∪ A2

D(x) where A1
D = {p : x′′ ≤ p ∧ p ≤

x′′′}, A2
D = {p : x ≤ p ∧ p ≤ x′}, x′′ + x′′′ = 2(π∗ + φ(1 − δ(1 − pd)),

x+ x′ = 2(π∗ + φ), x′′ = z(x) = z(x′), x′′ ∈ I4, x′′′ ∈ I7 and x′ ∈ I9+

7. if x ∈ 〈IL9+, π
∗ + φ(2− 3δpd)〉 then AD(x) = A1

D(x) ∪A2
D(x) where A1

D =
{p : x′′ ≤ p ∧ p ≤ x′′′}, A2

D = {p : x′ ≤ p ∧ p ≤ x}, x′′ + x′′′ =
2(π∗ + φ(1 − δ(1 − pd)), x + x′ = 2(π∗ + φ), x′′ = z(x) = z(x′), x′′ ∈ I4,
x′′′ ∈ I7 and x′ ∈ I9−

8. if x ∈ I5 then AD(x) = {p : x ≤ p∧ p ≤ x′} where x′ = 2(π∗+φ)− x ∈ I6

9. if x ∈ I6 then AD(x) = {p : x′ ≤ p∧ p ≤ x} where x′ = 2(π∗+φ)− x ∈ I5

10. if x ∈ 〈π∗ + φ(2 − 3δpd), IU9+〉 ∪ I10 then AD(x) = {p : x′ ≤ p ∧ p ≤ x}
where x′ = z(x) ∈ I3 ∪ I4

11. if x ∈ I11 then AD(x) = {x′ ≤ p ∧ p ≤ x} where x′ = 2(π∗ + φ)− x ∈ I2.

Proof. Parts one through three and eight through eleven are very similar to the
relevant parts in the claim 3. What we cannot use is the quasi-concavity of
UPD. However, it is easy to confirm that the acceptance sets are convex.

Parts four through seven present the key difference compared to claim 3. To
see those, first notice for default policies specified, the UPD is two-hill shaped.
One of the hills is symmetric around π∗ + φ(1− δ(1− pd)) and the second one
around π∗+φ. It then follows UPD(x) = UPD(x′) gives four solutions. One pair
symmetric around π∗ + φ(1− δ(1− pd)) and the second pair symmetric around
π∗+φ. It is then matter of straightforward algebra to work out the appropriate
intervals. �

Following claim gives the shape of UCA and UCD functions.

claim 7 (Shape of UCA and UCD).

1. UCA is increasing on I1∪I2 and decreasing on I3∪I9−∪I5∪I6∪I10∪I11∪I12

2. UCD is increasing on I1 and decreasing on I2 ∪ I3 ∪ I4 ∪ I7 ∪ I9− ∪ I5 ∪
I6 ∪ I10 ∪ I11 ∪ I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗ + φδpd)− x ∈ I4 ∪ I7

4. UCA(x′′) ≥ UCA(x′) and UCD(x′′) ≥ UCD(x′) for every x′ ∈ 〈IL9+, x〉 given
x ∈ 〈IL9+, π

∗ + φ(2− 3δpd)〉 with x′′ = 2(π∗ + φ)− x ∈ I9−.

5. UCA(π∗ − φδpd) ≥ maxx∈〈π∗+φ(2−3δpd),IU9+〉 UCA(x)
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6. UCD(z(x)) ≥ UCD(x′) ∀x′ ∈ 〈π∗+φ(2−3δpd), x〉 given x ∈ 〈π∗ + φ(2− 3δpd), IU9+〉

7. UCA has global maximum at π∗ − φδpd and UCD at π∗ − φ.

Proof. The first part is straightforward given the continuation value functions
except for I10. As in claim 4 we have VC concave on this interval so if we can
establish that U ′I10CA (IL10) is negative the claim follows. In claim 4 this gave us
equation

U ′I10CA (τ+) = −2φ
[
1 +

(
τ+ − π∗ − φ

φ

)(
1− δ − 2δpd(1− δ(1− pd))

(1− δ)(1− δpd)

)]
where we could establish negativity by the fact that 1−δ−2δpd(1−δ(1−pd)) > 0.
For the current case we need to do more work as this inequality might not be
satisfied.

Note that τ+−π∗−φ
φ < 1 + δpd which can be seen consulting the definition of

the intervals Ii. Hence if we can prove the derivative is negative when τ+−π∗−φ
φ

is replaced by 1 + δpd the claim follows. Doing that gives

U ′I10CA (τ+) = −4φ
[

1− δ − δpd(1− δ(1− pd))(1 + δpd)
(1− δ)(1− δpd)

]
which is negative as the term in the square brackets is positive. To see that, take
the nominator and substitute δ = (1 + pd −

√
1− 2pd + 17p2

d)/(2pd(1 − 4pd))
which is the solution to the condition defining case 2 and confirm the expression
is positive. Next, taking the derivative of the nominator with respect to δ gives
a quadratic equation in δ with the derivative being negative between the roots.
One of the roots is negative and the second one is higher than unity. This shows
the U ′I10CA (τ+) is negative and hence proves the first part of the claim.

Second part of the claim is straightforward using the similar argument as
part two of the claim 4. Likewise, the third part can be established using the
same argument as part three of the claim 4 noting that width of I3 is the same
as width of I4 ∪ I7.

To see the fourth part, notice that if we show UCA(x′) ≥ UCA(x) and
UCD(x′) ≥ UCD(x) where x′ = 2(π∗ + φ) − x ∈ I9− for every default pol-
icy x ∈ 〈IL9+, π

∗+φ(2− 3δpd)〉 then we are done. However, it is easy to confirm
VC(x′) = VC(x) for x, x′ just defined. Hence the claim follows.

The fifth part can be established using the similar argument as in part 4
of the claim 4 where the derivation of the upper bound on U9+

CA is done using
exactly the same values.

To prove the sixth part again the same argument as in part five of the claim
4 can be used. However, the conditions on δ defining case 2 alone are not
sufficient to ensure 1− δ − δ2pd + δ2p2

d > 0. However, the inequality still holds
by the virtue of assumption 1. Finally, the last part is a direct consequence of
the above. �

Again, putting claims 2, 6 and 7 together proves the specified offers are
indeed an equilibrium. CA can either implement his overall optimum π∗−φδpd
and when this policy is not available, she offers as low policy as possible.
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The same logic applies for CD. Using the claim 7, CD either offers her
overall optimum π∗ − φ and if this is not available she offer as low policy as
possible. This can be seen from the fact that UCD is decreasing over majority of
Ii intervals for policies above π∗ − φ. When we cannot establish the decreasing
UCD, claims 7 and 6 imply that whenever any policy from such interval is
available, there is also available another policy that gives CD higher utility
which in turn is rejected in favour of the lowest policy available. This concludes
the proof of case 2.

Case 3: Equilibrium for 4δ2p2
d−(1−δ)(1−δpd) ≥ 0 and δ ≤ 1

3pd

For 4δ2p2
d − (1− δ)(1− δpd) ≥ 0 and δ ≤ 1

3pd
the equilibrium offers are

pA(x) =


π∗ − φδpd for x ∈ I1 ∪ I2 ∪ I10− ∪ I9− ∪ I9+ ∪ I10+ ∪ I11 ∪ I12

x for x ∈ I3
2(π∗ + φδpd)− x for x ∈ I4 ∪ I7 ∪ I8

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4
2(π∗ + φ(1− δ(1− pd)))− x for x ∈ I7 ∪ I8
z(x) for x ∈ I10− ∪ I9− ∪ I9+ ∪ I10

2(π∗ + φ)− x for x ∈ I11

where

I1 = 〈x−, π∗ − φ〉
I2 = 〈π∗ − φ, π∗ − φδpd〉
I3 = 〈π∗ − φδpd, π∗ + φδpd〉
I4 = 〈π∗ + φδpd, π

∗ + φ(1− δ(1− pd))〉
I7 = 〈π∗ + φ(1− δ(1− pd)), π∗ + 2φ(1− δ(1− pd/2))〉
I8 = 〈π∗ + 2φ(1− δ(1− pd/2)), π∗ + 3φδpd〉

I10− = 〈π∗ + 3φδpd, τ−〉
I9− = 〈τ−, π∗ + φ〉
I9+ = 〈π∗ + φ, τ+〉
I10+ = 〈τ+, π∗ + φ(2 + δpd)〉
I11 = 〈π∗ + φ(2 + δpd), π∗ + 3φ〉
I12 = 〈π∗ + 3φ, x+〉.

Case 3 indeed subsumes two important subcases depending on whether δ ≤
1/(1 + pd) holds and one of the subcases can even be split further. However,
to economize on space and avoid extensive repetition of similar arguments we
have decided to treat all the subcases at once.

One should then be aware that some of the Ii intervals above might not be
properly defined. For δ ≥ 1/(1+pd) the intervals are exactly as those just given
with the qualification that I9− and I9+ might not exist if τ− and τ+ become
complex. If this happens, then I10− and I10+ naturally extend all the way to
π∗ + φ. If below we need to distinguish those two cases, we refer to case 3.1 if
δ ≥ 1/(1 + pd) with τ± real and to case 3.2 if δ ≥ 1/(1 + pd) with τ± complex.

The remaining possibility, referred to as case 3.3, is when δ ≤ 1/(1 + pd) in
which case I8 ceases to exist and I7 extends all the way to π∗ + 3φδpd. If this
happens, I10− also ceases to exist and I9− starts immediately at π∗ + 3φδpd.
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As before, the equilibrium offers induce the continuation value functions
given above where I9− and I9+ map into I9 and analogously for I10±. Both VC
and VP are continuous everywhere and differentiable everywhere except at the
borders of Ii intervals. Proceeding similarly, we first describe the shape of UPA
and UPD.

claim 8 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and
decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 ∪ I10− ∪ I9− and
decreasing otherwise. UPA has global maximum at π∗ + φδpd and is quasi-
concave. UPD has two local maxima at π∗ + φ(1 − δ(1 − pd)) and π∗ + φ the
former of which is also a global maximum. UPD has one local minimum at
π∗ + 3φδpd.

Proof. The argument is essentially as in claim 5 adjusting for different intervals.
The key difference is that the global maximum is at π∗ + φ(1− δ(1− pd)) and
not at π∗ + φ, something that can be readily verified. �

To characterize the shape of the acceptance sets, the AA described in claim 2
applies for the current case as well and we do not repeat it here. Before we pin
down AD let us define another pair of constants τ±2 given by the expression

τ−2 = π∗ + φ(1− δ(1− pd))− φ
√

δ(1−pd)
1−δpd (4δ2p2

d − (1− δ)(1− δpd)) and analo-

gously for τ+
2 . Notice that by one of the conditions defining case 3, the term in

the square root is positive. With this definition we have the following.

claim 9 (Shape of AD(x)). Let x be the default policy. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈ I11

3. if x ∈ 〈IL3 , π∗ + 2φ(1 − δ(1 + pd/2))〉 then AD(x) = {p : x ≤ p ∧ p ≤ x′}
where x′ = z−1(x) ∈ I9+ ∪ I10+

4. if x ∈ 〈π∗ + 2φ(1 − δ(1 + pd/2)), τ−2 〉 then AD(x) = A1
D(x) ∪ A2

D(x)
where A1

D = {p : x ≤ p ∧ p ≤ x′}, A2
D = {p : x′′ ≤ p ∧ p ≤ x′′′},

x+x′ = 2(π∗+φ(1−δ(1−pd)), x′′+x′′′ = 2(π∗+φ), x = z(x′′) = z(x′′′),
x′ ∈ I7 ∪ I8, x′′ ∈ I10− ∪ I9− and x′′′ ∈ I9+ ∪ I10+

5. if x ∈ 〈τ+
2 , π

∗+3φδpd〉 then AD(x) = A1
D(x)∪A2

D(x) where A1
D = {p : x′ ≤

p∧ p ≤ x}, A2
D = {p : x′′ ≤ p∧ p ≤ x′′′}, x+x′ = 2(π∗+φ(1− δ(1− pd)),

x′′ + x′′′ = 2(π∗ + φ), x′ = z(x′′) = z(x′′′), x′ ∈ I3 ∪ I4, x′′ ∈ I10− ∪ I9−
and x′′′ ∈ I9+ ∪ I10+

6. if x ∈ I10− ∪ I9− then AD(x) = A1
D(x) ∪ A2

D(x) where A1
D = {p : x′′ ≤

p∧p ≤ x′′′}, A2
D = {p : x ≤ p∧p ≤ x′}, x′′+x′′′ = 2(π∗+φ(1−δ(1−pd)),

x + x′ = 2(π∗ + φ), x′′ = z(x) = z(x′), x′′ ∈ I3 ∪ I4, x′′′ ∈ I7 ∪ I8 and
x′ ∈ I9+ ∪ I10+
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7. if x ∈ 〈IL9+, π
∗ + φ(2− 3δpd)〉 then AD(x) = A1

D(x) ∪A2
D(x) where A1

D =
{p : x′′ ≤ p ∧ p ≤ x′′′}, A2

D = {p : x′ ≤ p ∧ p ≤ x}, x′′ + x′′′ =
2(π∗+φ(1−δ(1−pd)), x+x′ = 2(π∗+φ), x′′ = z(x) = z(x′), x′′ ∈ I3∪I4,
x′′′ ∈ I7 ∪ I8 and x′ ∈ I10− ∪ I9−

8. if x ∈ 〈τ−2 , π∗+φ(1− δ(1− pd))〉 then AD(x) = {p : x ≤ p∧ p ≤ x′} where
x′ = 2(π∗ + φ(1− δ(1− pd)))− x ∈ I7 ∪ I8

9. if x ∈ 〈π∗+φ(1− δ(1− pd)), τ+
2 〉 then AD(x) = {p : x′ ≤ p∧ p ≤ x} where

x′ = 2(π∗ + φ(1− δ(1− pd)))− x ∈ I3 ∪ I4

10. if x ∈ 〈π∗ + φ(2 − 3δpd), IU10+〉 then AD(x) = {p : x′ ≤ p ∧ p ≤ x} where
x′ = z(x) ∈ I3 ∪ I4

11. if x ∈ I11 then AD(x) = {x′ ≤ p ∧ p ≤ x} where x′ = 2(π∗ + φ)− x ∈ I2.

Proof. The proof is very similar to the proof of claim 6 where the key difference
arises due to the fact that the higher of the two hills is the one symmetric around
π∗ + φ(1− δ(1− pd)). �

To finish the proof of the case 3, we need to show C indeed wants to imple-
ment as low policy as possible. Next claim proves that.

claim 10 (Shape of UCA and UCD).

1. UCA is increasing on I1 ∪ I2 and decreasing on I3 ∪ I10− ∪ I9− ∪ I11 ∪ I12

2. UCD is increasing on I1 and decreasing on I2∪I3∪I4∪I10−∪I9−∪I11∪I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗ + φδpd)− x ∈ I4 ∪ I7 ∪ I8

4. UCD(x) ≥ UCD(x′) where x ∈ I3∪I4 and x′ = 2(π∗+φ(1−δ(1−pd)))−x ∈
I7 ∪ I8

5. UCA(x′′) ≥ UCA(x′) and UCD(x′′) ≥ UCD(x′) for every x′ ∈ 〈IL9+, x〉 given
x ∈ 〈IL9+, π

∗ + φ(2− 3δpd)〉 with x′′ = 2(π∗ + φ)− x ∈ I10− ∪ I9−.

6. UCA and UCD are decreasing on 〈π∗ + φ(2− 3δpd), IU10+〉

7. UCA has global maximum at π∗ − φδpd and UCD at π∗ − φ.

Proof. The first and second part of the claim can be readily verified using the
expressions for the continuation values.

Part three can be established using the lemma 3 where we note that we are
allowed to use it given that the width of I3 is the same as width of I4 ∪ I7 ∪ I8.
The same argument gives part four as the width of I3 ∪ I4 is larger that the
width of I7 ∪ I8.

To see the fifth part, notice that if we show that UCA(x′) ≥ UCA(x) and
UCD(x′) ≥ UCD(x) with x′ = 2(π∗+φ)−x ∈ I10−∪I9− for every default policy
x ∈ 〈IL9+, π

∗ + φ(2 − 3δpd) then we are done. However, it is easy to confirm
VC(x′) = VC(x) for x, x′ just defined and the claim follows.
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Part six is the key difficulty. Note that by lemma 1 it suffices to show UCA
decreasing. However, we cannot rely on concavity of VC as in claims 4 and 7.
Instead we will use a following strategy. Writing U ′CA(x) = f ′CA(x)+δV ′C(x) we
replace V ′C(x) by upper bound on its maximum on appropriate interval and show
the resulting expression is negative which also proves that UCA is decreasing.

Here we are forced to split the proof according to different cases. For cases
3.1 and 3.2 the interval 〈π∗+φ(2− 3δpd), IU10+〉 falls into I10+ and we can write

V
′I10+
C (x) = pdz(x)′

[
U ′I3CD(z(x))

]
where we want to find upper bound on maximum of V ′I10+C on the interval
〈π∗ + φ(2 − 3δpd), IU10+〉. To do so notice both of the terms are negative and
hence if we can find minima of the two terms treated separately this will give
us something that has to be higher than the maximum of V ′I10+C .

It is easy to establish z(x)′ is decreasing on I10+ while the term in the square
brackets is increasing on I10+. It follows that if we evaluate z(x)′ at IU10+ and
U ′I3CD(z(x)) at π∗+φ(2−3δpd) the resulting expression will give us upper bound
on the maximum of V ′C(x) on 〈π∗ + φ(2− 3δpd), IU10+〉. Doing so gives

min
x∈〈π∗+φ(2−3δpd),IU10+〉

z(x)′ ≥ −1

min
x∈〈π∗+φ(2−3δpd),IU10+〉

U ′CD(z(x)) = −6φ

which gives us maximum for V ′C . It is then matter of straightforward algebra
to substitute the maximum into U ′CA(x) = f ′CA(x) + δV ′C(x) and confirm the
resulting expression is negative on 〈π∗ + φ(2− 3δpd), IU10+〉.

For case 3.3, π∗+φ(2−3δpd) ∈ I9+ so that we need to use similar argument
but separately on 〈π∗ + φ(2− 3δpd), IU9+〉 and I10+. We can still use

V
′I9+
C (x) = pdz(x)′

[
U ′I4CD(z(x))

]
V
′I10+
C (x) = pdz(x)′

[
U ′I3CD(z(x))

]
and the fact that z(x)′ is decreasing on I9+∪I10+ and U ′I4CD(z(x)) with U ′I3CD(z(x))
are increasing on I9+ and I10+ respectively. It follows we need to evaluate z(x)′

at IU9+ and IU10+, U ′I4CD(z(x)) at π∗ + φ(2− 3δpd) and U ′I3CD(z(x)) at IL10+.
The evaluation gives

min
x∈〈π∗+φ(2−3δpd),IU9+〉∪I10+

z(x)′ ≥ −1

min
x∈〈π∗+φ(2−3δpd),IU9+〉

U ′CD(z(x)) = − 2φ
(1− δ)(1− δpd)

(3(1− δ − δpd + δ2p2
d)− δ2pd(1− pd))

min
x∈I10+

U ′CD(z(x)) = − 2φ
1− δ

(1− δ + 2δpd).

Upon substitution of the maximum of V ′C into U ′CA(x) = f ′CA(x) + δV ′C(x)
the condition for UCA decreasing on I10+ becomes

δpd
1− δ

(1− δ + 2δpd)− 1−

√
(1− δpd)2 −

4δ3p2
d(1− pd)
1− δ

≤ 0
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which holds. To see this notice that for pd ≤ 1/2 we are done. Otherwise,
substituting δ = 1/(1+pd) confirms the condition holds for maximum δ allowed
for the case 3.3. Then the derivative of the condition with respect to δ is positive
and hence the condition must hold. Therefore UCA (and hence UCD by lemma
1) is decreasing on I10+.

For 〈π∗ + φ(2 − 3δpd), IU9+〉 upon substitution the corresponding condition
is (1 − δ)(4δpd − 1) − 3δ2p2

d(1 − δpd) + δ3p2
d(1 − pd) ≤ 0 which holds for the

case 3.3. To see this regard it as a cubic equation in δ. Solving for the roots,
noticing that the condition holds for δ below the lowest root and showing that
the lowest root is higher than 1/3pd proves the claim. Finally the last part of
the claim follows from all the above. �

Combining the information provided by claims 2, 9 and 10 proves the equi-
librium for case 3. CA either offers her overall optimum π∗ − φδpd and when
this policy is not available, then she offers as low policy as possible. This follows
from the information about the intervals over which UCA is decreasing provided
by claim 10 and where we cannot use this argument the same claim implies
that the minimum policy available gives CA highest utility among the policies
available. The same argument applies for CD and concludes the proof for case
3.

Case 4: Equilibrium for δ ≥ 1
3pd

For δ ≥ 1
3pd

the equilibrium offers are

pA(x) =


π∗ − φδpd for x ∈ I1 ∪ I2 ∪ I9 ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3
2(π∗ + φδpd)− x for x ∈ I4 ∪ I7 ∪ I8

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4
2(π∗ + φ(1− δ(1− pd)))− x for x ∈ I7 ∪ I8
z(x) for x ∈ I9 ∪ I10

2(π∗ + φ)− x for x ∈ I11

where

I1 = 〈x−, π∗ − φ〉
I2 = 〈π∗ − φ, π∗ − φδpd〉
I3 = 〈π∗ − φδpd, π∗ + φδpd〉
I4 = 〈π∗ + φδpd, π

∗ + φ(1− δ(1− pd))〉
I7 = 〈π∗ + φ(1− δ(1− pd)), π∗ + 2φ(1− δ(1− pd/2))〉

I8 = 〈π∗ + 2φ(1− δ(1− pd/2)), π∗ + 3φδpd〉
I9 = 〈π∗ + 3φδpd, τ+〉
I10 = 〈τ+, π∗ + φ(2 + δpd)〉
I11 = 〈π∗ + φ(2 + δpd), π∗ + 3φ〉
I12 = 〈π∗ + 3φ, x+〉.

As in the previous case we have subsumed two subcases and prove the
equilibrium for those jointly. The first subcase, referred to as case 4.1, is for
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δ ≥ 1/(1 + pd). If this condition holds all the intervals are as those given except
for I9 which does not exist and I10 starts at π∗ + 3φδpd. For δ ≤ 1/(1 + pd),
referred to as case 4.2, the interval I8 does not exist and I7 extends all the way
to π∗ + 3φδpd.

Once again it is easy to confirm the strategies given induce continuation value
functions on the corresponding intervals. For the current case both VC and VP
are continuous everywhere and differentiable everywhere except for points where
the different Ii intervals meet. Proceeding similarly, we first give the properties
of UPA and UPD.

claim 11 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and
decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 and decreasing
otherwise. UPA has global maximum at π∗+φδpd, UPD has global maximum at
π∗ + φ(1− δ(1− pd)) and both functions are quasi-concave.

Proof. The argument is very similar to the one used to prove claim 1 with minor
adjustments for the fact that UCD has global maximum at π∗+φ(1− δ(1−pd))
which is immediately apparent upon realizing that π∗ + φ(1 − δ(1 − pd)) is a
border of I4 and I7. �

Proceeding to outline the shape of the acceptance sets, for AA the claim 2
applies for the current case as well and we do not repeat it here. For AD we
have following.

claim 12 (Shape of AD(x)). Let x be the default policy. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈ I11

3. if x ∈ 〈IL3 , π∗ + 2φ(1 − δ(1 + pd/2))〉 then AD(x) = {p : x ≤ p ∧ p ≤ x′}
where x′ = z−1(x) ∈ I9 ∪ I10

4. if x ∈ 〈π∗ + 2φ(1− δ(1 + pd/2)), π∗ + φ(1− δ(1− pd))〉 then AD(x) = {p :
x ≤ p ∧ p ≤ x′} where x′ = 2(π∗ + φ(1− δ(1− pd)))− x ∈ I7 ∪ I8

5. if x ∈ I7 ∪ I8 then AD(x) = {p : x′ ≤ p ∧ p ≤ x} where x′ = 2(π∗ + φ(1−
δ(1− pd)))− x ∈ I3 ∪ I4

6. if x ∈ I9∪ I10 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = z(x) ∈ I3∪ I4

7. if x ∈ I11 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈ I2.

Proof. The proof is very similar to the proof of claim 3 where only minor ad-
justments have to be made for the current case due to the fact that UCD is
symmetric around its global maximum at π∗+φ(1−δ(1−pd)) and hence some of
the acceptance sets have to be made symmetric around π∗+φ(1−δ(1−pd)). �

Having the acceptance sets the last thing we need to do is to pin down the
shape of UCA and UCD. Next claim does that.

41



claim 13 (Shape of UCA and UCD).

1. UCA is increasing on I1 ∪ I2 and decreasing on I3 ∪ I9 ∪ I10 ∪ I11 ∪ I12

2. UCD is increasing on I1 and decreasing on I2 ∪ I3 ∪ I4 ∪ I9 ∪ I10 ∪ I11 ∪ I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗ + φδpd)− x ∈ I4 ∪ I7 ∪ I8

4. UCD(x) ≥ UCD(x′) where x ∈ I3∪I4 and x′ = 2(π∗+φ(1−δ(1−pd)))−x ∈
I7 ∪ I8

5. UCA has global maximum at π∗ − φδpd and UCD at π∗ − φ.

Proof. The first and second parts of the claim follow readily using the continu-
ation value function, except for intervals I9 and I10.

For case 4.1 we do not have to worry about I9 as it is empty. To show UCA
is decreasing on I10 we use the same argument as in claim 10. The only possible
difference arises from the fact that in case 3.1 the relevant part of the claim 10
U ′I3CD(z(x)) has been evaluated at π∗ + φ(2− 3δpd) whereas for the case 4.1 we
need to evaluate U ′I3CD(z(x)) at π∗ + 3φδpd. However, it is easy to confirm that
U ′I3CD(z(π∗+3φδpd)) = U ′I3CD(z(π∗+φ(2−3δpd))) and the argument is essentially
the same.

For case 4.2 we need to show the claim for both, I9 as well as I10. Never-
theless, the resulting expressions for maximum of V ′C on appropriate intervals
are the same as in case 3.3 of the relevant part of claim 10. This is due to the
fact that the only change is that I9 starts at π∗+ 3φδpd not at π∗+φ(2− 3δpd)
but z(x) evaluated at those values is the same. Therefore for the I10 interval
the claim follows by the similar argument as in claim 10. For I9 the condition
for UCA to be decreasing becomes (note this change is due to the fact that the
IL9 now is different than in claim 10) − 4δ3p2d(1−δ)

(1−δ)(1−δpd) ≤ 0 which holds.
Finally the parts three and four follow by the use of lemma 3 where we note

that we can use it as a width of I3 is the same as I4 ∪ I7 ∪ I8 (part three) and
a width of I3 ∪ I4 is larger than the width of I7 ∪ I8 (part four). Part five then
follows from the previous parts. �

By now familiar argument we do not repeat here we have an equilibrium for
case 4.

Uniqueness

To prove the essential uniqueness of the equilibrium, we first establish properties
of the acceptance correspondences AD and AA.

claim 14. For any x ∈ X the acceptance correspondences AD(x) and AA(x)
are nonempty, compact valued and upper-hemicontinuous.
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Proof. The nonempty and compact valued parts of the claim follow by definition.
To prove upper-hemicontinuity of the acceptance correspondence

AD(x) = {p ∈ X|UPD(p) ≥ UPD(x)}

pick two sequences {xα} → x and {pα} → p such that pα ∈ AD(xα) ∀α. Note
that by non-emptiness of AD this can be done. We need to show p ∈ AD(x).

Suppose p /∈ AD(x). Then

UPD(xα) ≤ UPD(pα) ∀α
UPD(x) > UPD(p).

Summing the two inequalities gives

UPD(xα)− UPD(x) < UPD(pα)− UPD(p) ∀α.

Taking the limit for α → ∞ on both sides gives contradiction to continuity of
UPD(·). For AA the proof is analogous and hence omitted. �

We note that although we have proven upper-hemicontinuity of the accep-
tance correspondences, for some of the cases above we could prove continuity as
well. More specifically, for all cases AA can be proven continuous and for cases
1 and 4, AD is continuous as well. Given that we do not need this stronger
result, we state it without proving.

Another interesting question arises as to what is the reason for failure of
lower-hemicontinuity of AD in cases 2 and 3. As shown in claims 5 and 8 the
shape of UPD resembles two peaks. The lower of the two is the reason. We
can always find a sequence of policies approaching the higher summit as AD
is nonempty. On the other hand there is no way to find a sequence of policies
approaching the lower summit ‘from above’.

Returning to our main argument, to prove the uniqueness result we need to
show uniqueness of the solution of the system of functional Bellman equations

UD(x) = max
p∈AD(x)

{fCD(p) + δpdUD(p) + δ(1− pd)UA(p)}

UA(x) = max
p∈AA(x)

{fCA(p) + δpdUD(p) + δ(1− pd)UA(p)}

where VC(x) = pdUD(x) + (1 − pd)UA(x). We already know the acceptance
correspondences of the system are upper-hemicontinuous. If we could prove their
continuity we would be able to use theorem 4.6 in Stokey and Lucas (1989) to
prove the uniqueness of the solution to the system above. It turns out the result
holds for upper-hemicontinuous correspondence as well, given we are willing
to make a concession to the value functions being merely upper-semicontinuous
and not continuous as in Stokey and Lucas (1989). The following theorem states
the result formally.

Theorem 1. Let X be convex subset of Rn, Γ : X � X nonempty, compact
valued and upper hemicontinuous corresponence, F : A → R on A = {(x, y) ∈
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X × X| y ∈ Γ(x)} bounded and upper semicontinuous function, SC(X) space
of bounded upper semicontinuous functions f : X → R with the sup norm
‖f‖ = supx∈X |f(x)| and β < 1. Then the T operator defined by

(Tf)(x) = max
y∈Γ(x)

[F (x, y) + βf(y)] (4)

maps SC(X) into itself and has a unique fixed point v = Tv.

Proof. Strategy of the proof is the following. First we make sure the maximum
in (4) exists, next we show that T is upper semicontinuous (u.s.c.) and hence
maps SC(X) into itself. Next we observe T is a contraction and hence has
unique fixed point, provided SC(X) is complete. As is customary, we view
normed vector space (X, ‖ · ‖) as a metric space on X with the uniform metric
d(f, g) = ‖f − g‖.

Since the notion of upper semicontinuity is not well known in the economic
literature we provide its definition.

Definition 4 (upper semicontinuous function). A function f : X → R̄ on a
topological space X is upper semicontinuous at x ∈ X if for each ε > 0 there
exists a neighbourhood U of x such that f(y) ≤ f(x) + ε for all y in U . It is
upper semicontinuous if it is upper semicontinuous at ∀x ∈ X.

An alternative definition sometimes used takes sequence {xn} and defines
u.s.c. as a function that satisfies xn → x ⇒ lim supn f(xn) ≤ f(x) which is
indeed the same requirement (Bourbaki (2007), chapter IV.6, proposition 4).
Yet another definition requires the {x ∈ X|f(x) < c} to be open for any c ∈ R
which is proved to be equal to the previous definition in Aliprantis and Border
(2006), lemma 2.42.

Intuitively, u.s.c. functions are allowed to jump but when they do so, the
value of the function at the jump is ‘the higher of the two’. The advantage of
the u.s.c. functions is that they posses a maximum on the compact interval.

Coming back to the actual proof, first observe that for any x ∈ X the func-
tion F (x, ·) + βf(·) is u.s.c. and is being maximized on a compact, non-empty
set Γ(x), hence the maximum exists (Aliprantis and Border (2006), theorem
2.43).

Furthermore, as Γ is upper hemicontinuous, T is u.s.c. (Aliprantis and
Border (2006), lemma 17.30) and it is clearly bounded. Hence T : SC(X) →
SC(X).

Next we need to make sure T satisfies conditions under which Blackwell’s
Theorem (Aliprantis and Border (2006), theorem 3.53) holds. Denoting by
B(X) space of bounded functions defined on X, we need T to map closed linear
subspace of B(X) that includes constant functions into itself. Furthermore, we
need T to satisfy monotonicity and discounting.

That SC(X) is a linear subspace of B(X) which includes constant functions
follows trivially. To establish SC(X) is closed we observe that B(X) is complete
and that any complete subset of a complete metric space is closed (Berberian
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(1999), chapter III.4, theorem 1). Hence if we can establish that SC(X) is
complete closedness follows.

To establish SC(X) with the uniform metric is a complete metric space, we
adopt the approach of proof of theorem 3.1 in Stokey and Lucas (1989) with
appropriate modifications. We find the function f to which Cauchy sequence of
functions {fn} converges, we show the sequence converges in the uniform metric
and finally that f ∈ SC(X).

First, fix x ∈ X and take a sequence {fn(x)} which satisfies

|fn(x)− fm(x)| ≤ sup
y∈X
|fn(y)− fm(y)| = ‖fn − fm‖

which satisfies the Cauchy criterion and hence converges to a limit f(x).
Second, we need to show {fn} converges in the uniform metric. Pick ε > 0

and N := N(ε) such than n,m ≥ M ⇒ ‖fn − fm‖ ≤ ε/2 (which can be done).
For any x ∈ X and all n,m ≥ N

|fn(x)− f(x)| ≤ |fn(x)− fm(m)|+ |fm(x)− f(x)|
≤ ‖fn − fm‖+ |fm(x)− f(x)|
≤ ε/2 + |fm(x)− f(x)|.

As fm(x)→ f(x), choose m(x) for each x ∈ X such that |fm(x)− f(x)| ≤ ε/2.
As x was arbitrary, it follows ‖fn − f‖ ≤ ε for ∀n ≥ N and as ε was arbitrary,
we have convergence in the uniform metric.

Third, we need to show f is bounded and u.s.c. first of which follows readily.
To show u.s.c., pick ε > 0 and k such that ‖fk − f‖ ≤ ε/3. As fn → f this can
be done. Then choose δ such that ‖x − y‖E < δ ⇒ fk(y) < fk(x) + ε/3 where
‖ · ‖E is usual Euclidean distance and it can be done by u.s.c. of fk. Finally

f(y)− f(x) = f(y)− fk(y) + fk(y)− fk(x) + fk(x)− f(x)
≤ |f(y)− fk(y)|+ fk(y)− fk(x) + |fk(x)− f(x)|
≤ 2‖f − fk‖+ fk(y)− fk(x)
≤ ε.

Finally, it is easy to confirm that q ≤ f implies Tq ≤ Tf (monotonicity)
and that there exists β ∈ (0, 1) such that T (f + c) ≤ Tf + βc for any constant
function c (discounting). Hence by Blackwell’s Theorem T is a contraction and
has a unique fixed point which concludes the proof. �

It can be readily verified that we can use the theorem in the current setting.
With the existence result in hand, it is obvious that the first equation has unique
solution for each UA and the second equation has unique solution for each UD.
It follows there exists a unique pair U∗D, U

∗
A that solves the system as a whole

(in the mathematical literature on this topic this is called coincidence solution).
Now notice that we have started the derivation of the equilibrium with a

conjecture that C brings P to indifference given she cannot implement her
overall optimal policy. This allowed us to derive the acceptance sets AD and AA
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and given those we derived optimal C’s behaviour and confirmed the conjecture
correct.

Using the theorem just given it follows that taking the conjectured AD and
AA if we derive a solution to the system of Bellman equations above, the solution
is unique. Hence the equilibrium constructed above must be unique.

The essential adjective comes from the fact that we have proven uniqueness
in the class of equilibria where C brings P to indifference given she cannot
implement her overall optimum. But there might be other equilibria where this
feature does not hold. Yet another reason to add the essential adjective is the
fact that we have proven uniqueness of the value functions, not uniqueness of
the proposal strategies. However, it is easy to see that the offer strategies are
unique solutions to the C’s optimization problem.

A2 Proof of proposition 2

For the first part, notice that inflation possibly stays outside J only if every
period is a D period. Probability of path of n periods all of them being D ones
is pnd which goes to zero.

For the second part, notice pA(x) = x⇒ pD(x) = x. Hence we need to find
a set of x for which pA(x) = x holds. This is given by 〈π∗ − φδpd, π∗ + φδpd〉
which has the width indicated.

For the third part, it is apparent that the set of x for which pA(x) = π∗ is a
finite collection of {x1, x2, . . .} which has measure zero in X.

A3 Proof of proposition 3

Assume there exists an equilibrium with pA(x) = π∗ + ε for some x ∈ X and
ε > 0. Denote by γ the equilibrium policy {pA(x) = π∗ + ε, qD(x)} and by γ′

policy {π∗+ ε/2, qD(x)}. By the definition of the equilibrium it must be that γ
solves C’s problem, that is, it is a solution to

max
{p,q}∈AA(x)

{
−(p− π∗)2 + δVC(q)

}
s.t. − (p− π∗)2 + δVP (q) ≥ −(x− π∗)2 + δVP (x).

By continuity of the constraint in p the policy γ′ ∈ AA(x). C’s utility from
γ′ is −ε2/4 + δVC(qD(x)) and from γ it is −ε2 + δVC(qD(x)). By assumption γ
is an equilibrium hence

−ε2 + δVC(qD(x)) ≥ −ε2/4 + δVC(qD(x))

which implies ε2 ≤ ε2/4, a contradiction. As we cannot be sure about the
existence of the equilibrium yet, the existence qualification must be added to
the proposition 3.
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A4 Proof of proposition 4

We establish the result using the series of claims.

claim 15. Let X− = X \ (π∗ − φ, π∗ + 3φ) and z, z′ ∈ X−. For any x ∈ X−
the equilibrium is given by

qA(x) = z

qD(x) = z′
pA(x) = π∗

pD(x) = π∗ − φ.

where the inflation strategies are unique. Moreover, for any x ∈ X−, VC(x) = 0
and VP (x) = − 4φ2pd

1−δ .

Proof. We first show ρ = {qD(x) = qA(x) = x, pD(x) = π∗ − φ, pA(x) = π∗} is
an equilibrium for any x ∈ X−. Fix x ∈ X−. Note that {pD(x) = π∗ − φ, x} ∈
AD(x) and {pA(x) = π∗, x} ∈ AA(x) and both increase C’s utility compared to
{x, x}. It also follows ρ induces VC(x) = 0 hence C clearly cannot do better.
Therefore ρ is an equilibrium.

Having the equilibrium for given x, notice it induces the same path of infla-
tion decisions for a fixed path of A and D periods as any x′ ∈ X−. It follows
VC(x) and VP (x) must be constant on X−. Therefore the first part of the claim
follows.

To show uniqueness of the inflation offers notice C’s utility strictly decreases
by offering anything other than inflation specified in the claim.

The fact that VC(x) = 0 ∀x ∈ X− follows immediately from two previous
remarks. To show VP (x) = − 4φ2pd

1−δ using the constancy of VP (x) we can write

VP (x) = pd[−4φ2 + δVP (x)] + (1− pd)[δVP (x)]

which after rearrangement gives VP (x) in the claim. �

claim 16. Let X+ = (π∗ − φ, π∗ + 3φ). Then for all x ∈ X+, VC(x) < 0.

Proof. Assume there exists an equilibrium such that VC(x) = 0 for some x ∈
X+. It follows VP (x) = − 4φ2pd

1−δ . Take D period, if P rejects today and follows

the equilibrium strategy from then on his utility is −(x − π∗ − φ)2 − 4φ2δpd
1−δ

whereas if he accepts (as equilibrium demands) his utility is −4φ2− 4φ2δpd
1−δ . For

this to be an equilibrium it must be that

−(x− π∗ − φ)2 − 4φ2δpd
1− δ

≤ −4φ2 − 4φ2δpd
1− δ

which rewrites as (x − π − φ)2 ≥ 4φ2 and holds for x /∈ (π∗ − φ, π∗ + 3φ), a
contradiction to x ∈ X+. �

claim 17. C’s offer γ in both types of periods, provided she cannot implement
her overall optimum, makes P indifferent between γ and the default policy γ̄.
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Proof. Denote by {p∗i , q∗i } for i ∈ {A,D} C’s most preferred policy. It follows
p∗A = π∗, p∗D = π∗ − φ and q∗i = arg maxx∈X VC(x). Fix x ∈ X and assume
{p∗i , q∗i } /∈ Ai(x) (notice this implies x ∈ S ⊆ X+).

i = D Take some {pD(x), qD(x)} and assume it is part of an equilibrium
and that it is in the interior of AD(x). By the continuity of the P ’s acceptance
condition in p, it follows {pD(x)− ε, qD(x)} for some ε > 0 would be accepted
as well and would make C better off. It follows {pD(x), qD(x)} cannot be an
equilibrium.

i = A We already know pA(x) = π∗ for all x ∈ X. Take some {π∗, qA(x)}
and assume it is part of an equilibrium and that it is in the interior of AA(x).
Take some q that belongs to the boundary of AA(x). As {p∗A, q∗A} is not in
AA(x) it is clear such q must exist.

Now as qA(x) is in the interior of AA(x) and q on its boundary, it follows
VP (qA(x)) > VP (q) and

AD(qA(x)) ⊆ AD(q)⇒ UD(qA(x)) ≤ UD(q)
AA(qA(x)) ⊆ AA(q)⇒ UA(qA(x)) ≤ UA(q).

Summing up the two inequalities multiplied by pd and 1− pd respectively gives

pd[UD(qA(x))− UD(q)] + (1− pd)[UA(qA(x))− UA(q)] ≤ 0.

At the same time VC(qA(x)) > VC(q) since qA(x) is chosen (equality in
general is possible, but then we might simply assume C chooses q instead).
Rewriting VC(qA(x)) > VC(q) gives

pd[UD(qA(x))− UD(q)] + (1− pd)[UA(qA(x))− UA(q)] > 0

a contradiction. �

claim 18. If P is not brought to indifference in A period for some x, then

pA(x) = π∗ qA(x) = z

for some z ∈ X−.

Proof. Note that converse of claim 17 reads if P is not brought to indifference
then C can implement her overall optimum, which by the claims 15 and 16 is
the pair indicated. �

claim 19. For any x ∈ X+ if P is brought to indifference in A period for
default policy x, then he is brought to indifference in D period for the same
default policy.

Proof. We prove the converse, i.e. if P is not brought to indifference in D
period, then he is not brought to indifference in A period.

Note that by claim 17 if P is not made indifferent, then C can implement
her overall optimum. For the D period this is {π∗ − φ, z} with z ∈ X−. This
implies

−(x− π∗ − φ)2 + δVP (x) ≤ −4φ2 + δVP (z)
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which after rearrangement gives

−(x− π∗)2 + δVP (x) ≤ δVP (z)− [3φ2 + 2φ(x− π∗)]

where the term in the square brackets is positive for any x ∈ X+. It then follows
{π∗, z} ∈ AA(x). �

Using the claims above, we can compute the continuation value function for
P . For x ∈ X− it is given by

VP (x) = pd[−4φ2 + δVP (x)] + (1− pd)[δVP (x)].

For x ∈ X+ for which P is brought to indifference in A and D periods it is

VP (x) = pd[−(x− π∗ − φ)2 + δVP (x)] + (1− pd)[−(x− π∗)2 + δVP (x)].

Finally, for x ∈ X+ for which P is brought to indifference only in D periods it
is

VP (x) = pd[−(x− π∗ − φ)2 + δVP (x)] + (1− pd)[δVP (z)]

where z ∈ X−. After some rearrangement, the equations above are those given
in the proposition. It is then straightforward to establish the intervals over
which those apply.

A5 Proof of proposition 5

We first establish properties of the acceptance correspondences AD and AA to
be used later.

claim 20. For any x ∈ X the acceptance correspondences AD(x) and AA(x)
are nonempty, compact valued and upper-hemicontinuous.

Proof. The nonempty and compact valued parts of the claim follow by definition.
To prove upper-hemicontinuity of the acceptance correspondence

AD(x) = {(p, q) ∈ X2| − (p− π∗ − φ)2 + δVP (q) ≥ −(x− π∗ − φ)2 + δVP (x)}

denote x = (x, x), p = (p, q) and f(p) = −(p− π∗ − φ)2 + δVP (q).
Pick two sequences {xα} → x and {pα} → p such that pα ∈ AD(xα) ∀α.

Note that by non-emptiness of AD this can be done. We need to show p ∈
AD(x).

Suppose p /∈ AD(x). Then

f(xα) ≤ f(pα) ∀α
f(x) > f(p).

Summing the two inequalities gives

f(xα)− f(x) < f(pα)− f(p) ∀α.

Taking the limit for α → ∞ on both sides gives contradiction to continuity of
f(·). For AA the proof is analogous and hence omitted. �
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To prove the main proposition, we need to show existence and uniqueness
of the solution of the system of functional Bellman equations

UD(x) = max
{p,q}∈AD(x)

{−(p− π∗ + φ)2 + δpdUD(q) + δ(1− pd)UA(q)}

UA(x) = max
{p,q}∈AA(x)

{−(p− π∗)2 + δpdUD(q) + δ(1− pd)UA(q)}.

We already know the acceptance correspondences of the system are upper-
hemicontinuous. Hence we can use the same theorem 1 as in proof of proposition
1 above where the remaining conditions are clearly satisfied. Similar argument
also proves the existence of coincidence solution U∗D, U

∗
A which solves the system

of Bellman functional equations as a whole.
Finally, the essential uniqueness comes from the fact that the uniqueness

applies only to the value function, not to the equilibrium proposal strategies.
Indeed claim 15 implies that for the default policies x ∈ X− there is continuum
of equilibria. However, each of them gives rise to the identical C’s value function.

A6 Proof of proposition 6

For the first part we are looking for a set of x such that qD(x) = qA(x) = x
holds. Focusing on the A periods and x ∈ X+ from the proposition 3 and claim
17 above we are looking for the solution to the equation

−(x− π∗)2 + δVP (x) = δVP (qA(x))

where qA(x) = x. It is immediate that the only solution to this equation is
x = π∗ which has measure zero.

For the x ∈ X− we know by claim 15 above that qD(x) = z and qA(x) = z′

with z, z′ ∈ X−. It is clear that we can set z = z′ = x. As we are allowed to
do so only for x ∈ X−, the measure of the set for which qD(x) = qA(x) = x is
at most measure of X−, which proves the first part.

To show the second part, we know that the largest J we can obtain is
X− ∪{π∗}. For X− we know by claim 15 that pD(x) = π∗−φ and pA(x) = π∗.
Hence the only remaining possibility is that qD(π∗) = π∗ which proves the
second part.

Finally the third part follows directly from proposition 3.

A7 Proof of proposition 7

We prove two claims that together prove the proposition. The strategy of the
proof borrows heavily from Riboni and Ruge-Murcia (2008).

claim 21. The difference in utilities associated with two sequences of policy
decisions is linear in φ.
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Proof. Take two general sequences of inflation decisions p = {p0, p1, . . .} and
p′ = {p′0, p′1, . . .}. Utility associated with those inflation sequences for commit-
tee member with preference parameter φ is

U(p, φ) = −
∞∑
t=0

δt(pt − π∗ − φI(Dt))2

where I(Dt) is D period indicator function. Taking the derivative of the differ-
ence U(p, φ)− U(p′, φ) with respect to φ gives

∂[U(p, φ)− U(p′, φ)]
∂φ

=
∞∑
t=0

2δtI(Dt)(pt − p′t)

which does not depend on φ. It follows the difference in utility between p and
p′ is linear in φ. �

Next claim shows that the proposal is passed if and only if it is accepted
by the median member. Formally, for the committee of N (N odd) members
denote their preference parameters {φ1, . . . , φN} such that φi < φj for every
pair 1 < i < j < N . Then the median member has the preference shock φm
which satisfies |{φi|φi > φm}| = |{φi|φi < φm}|.

claim 22. Assuming stage-undominated voting strategies, for a committee with
N members with N odd, C’s proposal γ is passed if and only if it is accepted by
the median committee member.

Proof. For sufficiency, assume median member accepts, then by the preceding
claim either all committee members with φi > φm accept or all committee
members with φi < φm accept. In either case, γ passes.

For necessity, assume median member does not vote for γ. Then either all
members with φi > φm do not vote for γ or all members with φi < φm do not
vote for γ. In either case γ is not approved. �

Using the claim 22 and the fact that the median preserving committee expan-
sion leaves the identity of the median voter unchanged, it follows C’s proposal
strategies have to be identical to the model with only two committee members.
And since C takes into account only presence of the median voter when deciding
about her proposal strategy, all her proposals are passed in equilibrium. Hence
the proposition follows.

A8 Numerical estimation of the equilibrium

This section describes the procedure to obtain numerical estimates of the equi-
librium in the model with the directive. We use standard value function ap-
proximation method.

First of all recall that by proposition 3 we know pA(x) = π∗. Furthermore,
from proposition 4 we know the shape of the acceptance sets and equilibrium
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offers for x ∈ X− and for some x ∈ X+ in A periods when C is able to implement
her overall optimum. Finally from proposition 5 we know the equilibrium is
unique.

To estimate the remaining part of the equilibrium, we restrict the pol-
icy space to X = 〈π∗ − 1.1φ, π∗ + 3.1φ〉 and specify grid of discrete nodes
{d1, . . . , dN} ∈ X. Call this grid G. In practice we used π∗ = 2, φ = 1 which
with the distance of the neighbouring nodes equal to 0.001 gave N = 4201.
We also experimented with different values of π∗ and φ but the shape of the
equilibrium is not affected as π∗ only ‘shifts the equilibrium up and down’ the
vertical axis and φ only ‘stretches the equilibrium’ between π∗−φ and π∗+ 3φ.

With the policy space specified, we follow the following iterative procedure.
At the iteration t we solve C’s optimization problem for A and D periods for
each default policy in G. Denote by V tC(G) the N ×1 vector of C’s continuation
values, each of them associated with a distinct node di ∈ G at the t-th step of
the iteration.

For D periods we solve for each di ∈ G

max
{p,q}∈AD(di)

−(p− π∗ + φ)2 + δV tC(q)

by searching the grid G. This gives us two N × 1 vectors of equilibrium offers
for the D period, call those ptD and qtD.

For A periods we already know pA(x) = π∗ hence for each di ∈ G we solve

max
{π∗,q}∈AA(di)

V tC(q)

again by searching the grid G. This gives us one N × 1 vector of status-quo
offers for the A period, call it qtA.

Finally we compute the N × 1 vector of C’s continuation values

V t+1
C (G) = pd

[
−(ptD − π∗ + φ)2 + δV tC(qtD)

]
+ (1− pd)

[
δV tC(qtA)

]
and proceed to the iteration t+1. As usual, for the first step of the iteration we
used V 1

C(G) = 0. In practice the rate of convergence of the results is very fast
and the offer strategies become almost indistinguishable between the iterations
from around t = 10 on. Nevertheless the estimation presented is based on t = 30
and we also experimented with iterations up to t = 10.000 to be sure about the
results.

The reason why we use this rather rudimentary numerical procedure instead
of some more involved one (e.g. better optimization algorithm and functional
approximation for VC) is twofold. First, we suspected the VC to be ill-behaved
with number of local maxima and we did not want the optimization algorithm
to pick a wrong one especially as the acceptance sets are in general not convex.
Second, we suspected the resulting equilibrium to involve several discontinuities
and we did not want the functional approximation to ‘smooth out’ the problem.

We also experimented with the different estimation procedures. The first one
involved estimating the full model without specifying the acceptance sets. The
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difference is that instead of having same AA and AD in each step, we started
with V 1

P (G) = 0 and derived new VP at each step of the iteration in a similar
way as the VC . This gave us new acceptances sets for the next iteration. As
this procedure gives almost identical results whereas the one presented above
takes only a fraction of time, we use the faster one.

We also tried to estimate the equilibrium using the functional approximation
of the VC function. We used cubic splines doubling the nodes at the values where
we expected kinks in the VC function but the results were again nearly identical.
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