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Abstract
This study suggests a two-stage mechanism whereby a small group of actors (e.g. firms) 
collects contributions to purchase a discrete, excludable good which they intend to use 
collectively in non-rival ways. This good is assumed to be offered at an auction, where 
other actors might be bidding to get it for sole use. Economic theory has offered 
sophisticated mechanisms to implement an efficient allocation of public goods, but the 
proposed solutions are frequently rather complicated and impractical for producing 
plausible mechanisms. This study presents a mechanism which tries to meet the 
requirements of simplicity. Actors who agree to place joint bids - for a good that they 
will share ex post - must contribute at least a minimum fraction of their wealth. We 
show that, under majority rule, this fraction can be set using a translation to our 
circumstances of the median-index theorem, which applies under weak assumptions. 
Thus, in the first stage of our mechanism, participants bidding for shared use vote on a 
minimum percentage of wealth to pay (which is common knowledge); in the second 
stage, they bid at least that minimum amount, then the auctioneer compares the total of 
these bids with the highest bid (if any) for exclusive use, and provisionally assigns the 
lot to individual or shared use accordingly. This continues till there is no excess 
demand. 

JEL classification: H41; D44; D70

Keywords: Public goods; Voluntary provision; Majority rule; Auctions
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1.- Introduction: bidding for (public) goods

This study considers a setting where a discrete good - which can be used either 

collectively by several actors in non-rival ways or individually - is available at 

an auction. Bidding for a (non-rival) good as a group of players seems to

present at least one crucial issue, compared to circumstances where everyone is 

bidding against the others, because players have to use a mechanism to set their 

individual contributions to a jointly submitted bid. The aim of this work is to 

suggest and investigate a plausible way to form an aggregate bid for a good at 

auction. The good will be used collectively or individually according to the 

offers received by the auctioneer. For instance, the good might be an input that 

could be shared by its owners if purchased collectively, or, alternatively, used 

by a sole owner. In both cases, the group or individual who submits the auction 

winning bid will enjoy exclusive use of the good. In this analysis, it is assumed

that grouped players agree on usage terms before the auction takes place (e.g., 

by setting usage standards); therefore, this work does not deal with the problem 

of optimal usage of a public good, which usually involves an exogenously given

amount of it.

The mechanism suggested requires auction participants who bid collectively to 

contribute at least a minimum fraction of their wealth; this fraction is set by 

majority vote (each player has one vote). We show that, under majority rule, the 

minimum fraction of wealth can be set using a translation to our circumstances 

of the median-index theorem, which applies under weak assumptions (Cave 

and Salant 1995). Thus, our envisaged mechanism is such that, in the first stage, 

players who will submit a joint bid vote on a common minimum percentage of 

their wealth to pay; in the second stage, individual participants submit their 

individual offers, while group participants contribute at least the minimum 
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amount voted in the previous stage and collect an aggregate bid. Then, the 

auctioneer compares this bid with the highest bid (if any) for sole use, and 

provisionally assigns the lot auctioned off accordingly. This continues till there 

is no excess demand. 

The rest of this paper is organized as follows. Section 2 provides a review of the 

literature on the public good provision problem, with focus on voluntary 

contribution games. Section 3 introduces our basic model, which is a translation 

of Cave and Salant’s model on cartel quotas under majority rule to our setting

(Cave and Salant 1995). Section 4 explores that translation by verifying, firstly, 

that an analogous set of properties is satisfied and, secondly, that the median-

index theorem applies – mutatis mutandis - to our setting. Section 5 closes this 

paper.

2.- Literature review

Two important features of the public goods provision problem are (i) the 

mechanism or institution for providing the good and (ii) the incentive structure 

for potential providers (Isaac et Al. 1989, p. 217).  Economic theory has 

suggested sophisticated mechanisms to implement an efficient allocation of 

public goods (for surveys, see: Green and Laffont 1977; Groves and Ledyard 

1987; Laffont 1987; Cullis and Jones 1998). The general results are technically 

impressive, but the proposed solutions are frequently rather complicated and, 

hence, impractical for producing plausible mechanisms which induce efficient 

contributions to public goods (see criticisms in Walker 1981, p. 71; Laffont 1987, 

p. 567; Jackson and Moulin 1992, p. 2; Falkinger et Al. 2000, p. 247). Therefore, 

several authors have suggested incentive mechanisms which seem to meet the 
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requirements of simplicity (Falkinger et Al. 2000).1 Among those mechanisms, 

our study is more closely related to analyses of settings where the public good 

is provided by voluntary rather than by compulsory action. For instance, 

Jackson and Moulin (1992) study circumstances - with characteristics similar to 

our problem - where several agents must decide whether or not to undertake a 

project that will benefit them all and be consumed without rivalry by all agents. 

Their mechanism uses no statistical information about the distribution of 

agents’ characteristics and places the burden of acquiring information about the 

preference profile upon the agents themselves. In their model, Jackson and 

Moulin assume that individuals know their own valuations and that at least 

two agents know the average of all the agents valuations. The authors note that 

“[t]his is admittedly a strong assumption, but it appears necessary if we wish to 

use simple, intuitive mechanisms [...]. The alternative route, relying on the 

existence of Bayesian beliefs about mutual preferences, has a stronger claim to 

realism as a model of individual behaviour, but its mechanisms are pegged to 

the Bayesian characteristics of a particular group of agents” (p. 126). In 

addition, it is noted that mechanisms which require statistical information 

about agent’s valuations are not very meaningful among a few agents (as in the 

circumstances that we consider).

A different theoretical approach in the analysis of voluntary games is proposed 

by Bagnoli and Lipman (1989), who develop a contribution game for the 

provision of non-excludable public goods. They show that a natural game – in 

contrast to quite complex games of full implementation – in fact fully 

implements the core of their economy in undominated perfect equilibria. In 

their model, individual agents have sufficient incentives to voluntary achieve 

                                               
1 For some of those mechanisms, e.g. the compensation mechanism (Varian 1994) and the 
Falkinger mechanism (Falkinger 1996), their effectiveness has been tested in experiments 
(Bracht et Al. 2008). 
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the Pareto efficient outcome. Moreover, Bagnoli and Lipman’s theory of a 

voluntary contribution game was tested in a laboratory setting by Bagnoli and 

McKee (1991), who found that differences in wealth or valuation do not bear on 

the capability of providing the public good (even if those differences are 

considerable). Another relevant feature of Bagnoli and Lipman`s work is that 

they consider situations where a public good could be produced only if the sum 

of contributions met or exceeded some threshold, which is known by 

participants. In McBride (2006), the case of discrete public goods provision 

under threshold uncertainty is analyzed. The author shows that, for a large 

class of threshold probability distributions, equilibrium contributions will be 

higher under increased uncertainty if the public good’s value is sufficiently 

high.

Other studies of circumstances similar to ours refer to alternative environments, 

sometimes said to exhibit the assurance problem, where a potential provider 

can have an incentive to contribute “if, and only if, he or she has a credible 

guarantee that others will also contribute. Absent such a guarantee, the 

provider may withhold” (Isaac et Al. 1989, p. 217). For instance, Boadway et Al. 

(2007) focus on a multi-stage process of non-cooperative voluntary provision of 

public goods, where, in the first stage, one or more players announce 

contributions that may be conditional on the subsequent contributions of 

others; in later stages, players choose their own contributions and fulfill any 

commitments made in the first stage. They find that efficient levels of public 

goods can be achieved under some circumstances, while in others commitment 

is ineffective. 

Some features of those environments may be found in voluntary collective 

action approaches to the optimal provision of public goods, based on mutual 

subsidization by agents of their individual contributions. The aim is to cope 
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with the free-rider problem and to increase voluntary contributions to the 

provision of a public good above Nash-Cournot levels by matching behaviour,

which was originally suggested by Joel Guttman in 1978 (Guttman 1978, 1987). 

Matching behaviour is “a strategy that makes an agent’s contribution to the 

provision of a public good conditional on the contributions of his counterparts 

in order to induce them to contribute as well” (Guttman 1986, p. 172). 

Guttman’s setting is a two-stage non-cooperative game: the first stage of the 

game is played to choose simultaneously the matching rates (i.e. the rate at 

which each player i will subsidize the sum of the flat contributions offered by 

the other players in the next stage); given the matching rates chosen in the first 

stage, the second stage of the game is played to determine, again 

simultaneously, the autonomous flat contributions. The model predicts Pareto 

optimal provision of a non-excludable public good by identical actors with 

perfect information, regardless of the number of actors and by two non-

identical actors. Guttman’s model offers interesting theoretical results. 

However, implementation is difficult, because the model is based on a two-

stage game that is hard to play effectively, especially when the number of 

players grows above a few ones.

The issue of participation is underlined in Palfrey and Rosenthal (1984), who 

argue that, in the analysis of the provision of public goods, the free-rider 

problem leads to two theoretical issues: (i) the demand revelation question and 

(ii) participation. In their model, to isolate the participation problem from the 

demand revelation problem, they deliberately make all players identical and 

thereby remove all incentives for players to conceal preferences. The only 

question is whether the group can achieve an optimum by voluntary

contributions. Their analysis investigates the minimum contributing set (MCS), 

where individuals may choose to contribute all of their wealth, or not, to the 
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provision of a public good, under the rule that the good will be supplied if a 

pre-announced number of individuals contribute. In the MCS, however, the 

announced number is smaller than the entire group; hence, some individuals 

will not contribute, but still be able to use the public good (if provided). Van de 

Kragt et Al. (1983) and Dawes et Al. (1986) found that, in their laboratory 

settings, the MCS regime is largely successful in generating an efficient 

outcome.

3.- Basic model

Our basic model has a fundamental element in a tentative translation of an 

earlier model developed by Cave and Salant (1995) on cartel quotas under 

majority rule; we propose a translation of that model to the circumstances that 

we are investigating – i.e. collecting an aggregate bid to purchase a (public)

good - and we use the following notation:

N number of players (i.e. firms) bidding together as a group;

w i bidder i’s (non-negative) exogenous wealth, which is assumed to be 

common knowledge and immediately convertible in assets accepted by 

the seller – i.e. the auctioneer - at no cost (wi is a firm-specific scalar used 

to translate F into a restriction on i);

c i constant cost of capital (opportunity cost of funds) for player i;

b i ‘individual’ bid, i.e. the amount of assets offered as individual 

contribution to the purchase of a (public) good;

B - i sum of individual contributions offered by the n players, excluding 

player i, i.e. B - i =
 ij

jb ;
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F minimum fraction (or percentage) of wealth to pay, chosen by the N 

bidders by unweighted majority-rule voting; hence F will be the same for 

every player. F is a committee’s prior choice and if the committee chooses 

the fraction F, then firm i’s contribution must be no lower than Fwi .

In our model, firms are indexed in order of ascending cost of capital; if two 

firms have the same cost of capital, firms are indexed in order of increasing 

wealth:

if c i > cj or

if c i = cj and w i > wj

then i > j

(if c i = cj and w i = wj then assign indexes arbitrarily).

Firms bidding collectively are assumed to spend their wealth on contributions 

to the purchase of a public good input. To avoid free riding, those firms must 

join a committee (i.e. the cartel in the original model), whose fundamental task 

is to vote by majority on the minimum fraction F of individual wealth that must 

be contributed. 

Let B = N
ib

1
= B - i + b i denote the aggregate bid; then B N

iFw
1

= F N
iw

1
. 

Also, let f(B) denote average benefits (e.g. revenues) attainable by winning 

aggregate bids B.

Firm i is assumed to maximize profits. For this purpose, i has to choose its 

preferred contribution (bi) to the collective project, given the contributions 

offered by other firms and the previously selected fraction F (where F  [0, 1]):

max b i [f(B) – c i] = b i [f(B - i + b i) – c i]

s.t.

b i F w i .
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Each bidder’s equilibrium profit i depends, inter alia, on the prior choice of F; 

hence we also regard them as induced profits i(F). In addition, in our setting

equilibrium profits will be zero for every group bidder if B is less than max{ Lk }, 

where Lk is the amount of money offered by firm k who is bidding against 

everyone else to get the good auctioned off for sole use (k is not in the group of 

n firms bidding for shared use of the good and therefore is not in the voting 

committee):

i = 0 if B < L k ]N,1[],N,1[  ki .

Assume total benefits TB depend on the amount of funds collected in the 

following way: 

TB = b i
. [f(B - i + b i)] = b i

. f(B).

Then marginal benefits MB are equal to f(B) + b i f’ (B). Assume MB is strictly 

decreasing. With MB strictly decreasing, f(B) decreases. However, i (F) will be 

positive as long as f(B) exceeds c i .

4.- Analysis of the model

4.1.- Economic equilibrium which would result if the group had voted for any 

arbitrary fraction F of wealth

Assume that:

- the average revenue function f(B) is strictly decreasing and twice 

continuously differentiable;

- the total benefit function [i.e., b i * f(B)] is strictly concave;

- if b i ∞ then lim f(B) = 0; 
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- there would be positive profits if the lowest-cost firm contributed funds 

whose cost of capital is c 1  [i.e., f(B) - c 1 > 0]. 

Given those benefit assumptions, then a unique Cournot equilibrium - induced 

by any given fraction F of wealth - exists in pure strategies.

Proofs.

Existence and uniqueness are proved in Appendix A.

The equilibrium is characterized by an aggregate bid (B) divided into a vector of 

individual bids (b1, b2, .., bN) satisfying one of the following conditions for i = 1, 

2, .., N:2

a) unconstrained participant: f(B) + b i f’(B) – c i= 0  and 0 < Fwi< b i ;

b) constrained participant: bi = Fwi and f(B) + Fwi f’(B) – c i
 0  

(firm i would like to contribute less than bi = Fwi , but – since i joined the 

procedure – it must contribute at least a minimum amount of funds, 

according to F).

4.2.- Fraction of wealth which a group would select under majority rule: the 

median-index theorem revisited

Assume voters (i.e. firms) are foresighted and self-interested. We want to prove 

that the median-index theorem (Cave and Salant 1995) applies to our setting. 

                                               
2 If a firm would like to get access to a spectrum commons, but expects average benefit to be so 

low that it would not be able to make positive profits, it will not join the procedure and will 

remain an outsider; of course, bo = 0. 
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The median-index theorem states that – assuming an odd number of voters (N) 

are to select an alternative from a compact one-dimensional set of alternatives 

by simple majority rule – every ideal point of the firm with the median index on 

the committee will be weakly preferred to any other point by a majority of the 

voters, if the following preference assumptions are met:

1.- continuity, i.e. each voter’s preferences can be represented by a continuous 

real-valued function on the set of alternatives;

2.- unconstrained monotonicity, i.e. each voter’s preference function is 

monotonically decreasing above its cutoff3;

3.- nesting of cutoffs and partial agreement, i.e. if voters are indexed so that 

someone with a higher cutoff has a lower index, then the preferences of any two 

voters display partial agreement4 below their cutoff points.

Therefore we have to prove – preliminary - that an analogous set of preference 

assumptions is satisfied in our setting. Given the benefit assumptions above, we 

will introduce a ‘translation’ of the regularity condition to our setting. Then, 

following Cave and Salant (1995), we will show that our benefit assumptions 

and regularity condition are sufficient for a set of preferences5 to display the 

following properties:

a) nested cutoffs;

b) partial agreement;

c) unconstrained monotonicity;
                                               
3 In our setting, a “cutoff” is the wealth fraction which exactly induces firm i to contribute the 
amount of funds that firm i would freely choose to maximize its profits (i.e. the constraint is just 
binding). A unique cutoff is associated with each firm (the proof is in Appendix B).
4 The agreement in preference is said to be partial when no restrictions are placed on the 
preference if the firm with the smaller index prefers the larger fraction (or vice versa). In 
contrast, the agreement is said to be complete when firms have the same marginal cost and 
must therefore rank the two fractions identically (Cave and Salant 1987). 
5 Cave and Salant (1995) start showing properties for the induced preferences and then examine 
the majority-rule voting behaviour of any set of agents whose preferences satisfy a 
generalization of those properties. Profit functions describe our (induced) preferences. 
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d) continuity.

This will allow us to prove the existence of a Condorcet winner, that is a 

fraction of wealth to pay which will be selected by some majority of the firms. 

We will then consider uniqueness of a Condorcet winner.

Let B(F) denote the aggregate equilibrium bid induced by a majority decision to 

contribute fraction F of wealth. Also, let Fj denote the fraction that would just 

bind on firm j, i.e. j’s marginal cost and benefit are equal for F = Fj . Thus, given 

B– i(Fj), Fj is implicitly defined as

f (B(Fj)) + Fj wj  f’ (B(Fj)) – cj = 0 .

Fj is regarded as j’s “cutoff”, because it is the fraction which exactly corresponds 

to the amount of j’s wealth that j would bid to maximize its profits – whereas,

above that fraction, j has to contribute more than the amount where its marginal 

benefit equals marginal cost (j’s profit maximization is constrained).

Regularity condition

In Cave and Salant’s model, the regularity condition is a crucial one: “[it] is 

necessary and sufficient for the cutoffs to be nested and […] is sufficient for the 

existence of a Condorcet quota. When cutoffs are nested, the induced 

preferences display a property we refer to as ‘partial agreement’” (Cave and 

Salant 1995, 87); in addition to nesting and partial agreement, the preferences 

display “continuity” and “unconstrained monotonicity” (Cave and Salant 1995, 

88).

We will therefore elaborate an analogous regularity condition, for the 

circumstances that we are investigating. Assume that the following regularity 

condition holds for each pair of firms i and j such that i > j:

f’ (B(Fj)) Fj (w i – wj)  c i – cj .

This is a reduced form of 
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f (B(Fj)) + f’ (B(Fj)) Fj w i – f (B(Fj)) – f’ (B(Fj)) Fj wj  c i – cj

where – given  the selected fraction F = Fj - the first part of the left-hand side is 

the marginal benefit for firm i when firm i bids the minimum amount required 

by the committee (bi = Fj w i); while the second part of the left-hand side is the 

marginal benefit for firm j (j would bid exactly that fraction of its wealth which 

is required by the committee). The right-hand side is the difference in the costs 

of capital for firms i and j.

Then any fraction binding on one firm must also bind on firms with greater

indexes: for instance, if Fj is a fraction binding on firm j and i > j, then Fj must 

also be binding on firm i. In fact, if Fj is binding on j, when F = Fj marginal 

benefit and marginal cost are equal for firm j, but firm i would be better off with 

a fraction F lower than Fj (i.e. F < Fj), because when F = Fj firm i’s marginal 

benefit are lower than its cost of capital. Nevertheless it must contribute at least 

Fj w i. This can be shown by re-writing the regularity condition in the following 

way:

f (B(Fj)) + f’ (B(Fj)) Fj w i  – c i  f (B(Fj)) + f’ (B(Fj)) Fj w j  – c j

and, given that Fj is just binding on j, f(B(Fj)) + f’ (B(Fj)) Fj w j  – c j = 0; therefore

f(B(Fj)) + f’ (B(Fj)) Fj w i  – c i  0

which shows that, when F = Fj , for firm i marginal benefits are lower than its 

cost of capital (or, if equality holds, Fj is just binding on i as well as on j).

If firms face the same cost of capital, but firm i has greater wealth than firm j, 

ci=cj and wi > wj ; the regularity condition therefore becomes:

f’ (B(Fj)) Fj (wi – wj)  0 .
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This can be manipulated6 to get 

f (B(Fj)) + f’ (B(Fj)) Fjwi  f (B(Fj)) + f’ (B(Fj)) Fjwj = cj = ci

which, again, shows that for F = Fj and ci = cj marginal benefits are lower than 

firm i’s cost of capital (or, if equality holds, Fj is just binding on i as well as on j).

It can be noted that, if firm i and firm j have the same wealth, wi = wj (and cicj); 

then in the regularity condition 

f’ (B(Fj)) Fj (wi - wj )  ci - cj

the left-hand side is equal to zero; therefore the regularity condition holds (by 

assumption, ci- cj  0).

The regularity condition also holds in applications where fractions are set equal 

to the Cournot-equilibrium individual contributions prior to the formation of a 

(voting) committee: this is the case where no minimum bid is required from 

each player, who can bid as little as he likes (the Cournot contribution).

Is the regularity condition sufficient for the existence of a Condorcet fraction?

Cave and Salant (1995, 89) show that “any set of preferences displaying nested 

cutoffs, unconstrained monotonicity, partial agreement, and continuity must 

have a Condorcet winner”. Therefore, to go on with the ‘translation’ of Cave 

and Salant’s model, the average benefit assumptions, together with the 

regularity condition, should be sufficient for the set of induced preferences 

arising from the Cournot equilibrium to display the following properties:

1) nested cutoffs;

2) partial agreement;

3) unconstrained monotonicity;

                                               
6 Recall: F = Fj which is the fraction just binding on firm j; hence marginal benefit and cost of 

capital are the same for firm j. Moreover, in this case it is assumed that the difference in the 
costs of capital is zero – i.e. firms face the same cost. Thus, for F = Fj marginal benefit for firm j is 

also equal to firm i’s cost of capital.
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4) continuity.

Those properties are translated below to our circumstances.7

1) Nested cutoffs.

If i > j , then Fi  Fj for any couple of firms; hence cutoffs are nested: 

FN  FN-1  …  F2  F1

(that is, if firms face different marginal costs of capital, when i > j firm i has 

greater marginal cost than firm j - hence firm i prefers a fraction F lower than Fj;

if marginal cost is the same for both firms, and firm i’s wealth is greater than 

firm j’s wealth, then again firm i prefers a fraction F lower than Fj)

The ‘translated’ regularity condition is necessary and sufficient for the cutoffs to 

be nested:

f’ (B(Fj)) Fj (wi – wj)  ci – cj iff FN  FN-1 … F2 F1 .

Note that, by adding the implicit definition of Fj and the regularity condition, 

we obtain that also firm i is constrained at fraction Fj :

   f (B(Fj)) + Fj wj  f’ (B(Fj)) - cj (implicit definition of j’s cutoff)

+ f’ (B(Fj)) Fj (w i – wj) - c i + cj  (regularity condition)

= f (B(Fj)) + Fj w i  f’ (B(Fj)) - c i  0 (i is constrained by fraction Fj).8

2) Partial agreement.

                                               
7 Proofs similar to those elaborated by Cave and Salant will be presented (some of those proofs 
are relegated to the appendixes).  
8    The implicit definition of  j’s cutoff is f (B(Fj)) + Fj wj  f’ (B(Fj))- cj = 0; the regularity condition 

is f’ (B(Fj)) Fj (w i – wj)  c i – cj and it is a non-positive number; f (B(Fj)) + Fj w i  f’ (B(Fj))  ci

shows that i is constrained at Fj.
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If two fractions of wealth bind on each of two firms and one firm strictly prefers 

a particular fraction (case 2.a below) – or is indifferent between the two 

fractions (case 2.b below) - it is possible, in some circumstances, to deduce that 

the other firm likewise – and respectively - strictly prefers the same fraction, or 

weakly prefers one of the two fractions. “The agreement in preference is said to 

be ‘partial’ rather than ‘complete’ since no restrictions are placed on the 

preference if the firm with the smaller index prefers the larger [fraction] or, 

alternatively, if the firm with the larger index prefers the smaller [fraction]. In 

contrast, firms with identical marginal costs must rank the two [fractions]

identically even in these cases. Agreement is then said to be ‘complete’” (Cave 

and Salant 1995, 87).

2.a) Strict preference:

for any two firms i and j such that i < j and any pair of fractions  and F such 

that  < F  Fj  Fi:

if   i F then  j F

or

if F  j  then F  i  .

“That is, if the firm with the smaller index strictly prefers the smaller [fraction], 

then so must the firm with the larger index; reciprocally, if the firm with the 

larger index strictly prefers the larger [fraction], then so must the firm with the 

smaller index” (Cave and Salant 1995, 87).9

Proof.

                                               
9 If firm i strictly prefers F to  and both fractions bind on i, then F wi {f (B(F)) – c } >  wi .
.{f(B()) – c }. We obtain F wj {f (B(F)) – c } >  wj {f (B()) – c } by multiplying by the positive 
number wj/wi,. Therefore, if both fractions also bind on firm j, firm j strictly prefers F too.
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Since   i F

 wi {f (B()) – ci } > F wi {f (B(F)) – ci }; 

also, since ci  cj and  < F

-  (cj – ci) ≥ - F (cj – ci).

Dividing the first inequality by wi, adding the second weak inequality and 

multiplying by wj, we obtain

 wj {f (B())– cj } > F wj {f (B(F)) – cj }

which confirms that   i F .

The reciprocal statement can be verified mutatis mutandis.

2.b) Indifference:

for any two firms i and j such that i < j and any pair of fractions  and F such 

that  < F  Fj  Fi:

if  ~ i F then  weakly  j F

or

if F ~ j  then F weakly  i  .

“That is, if the firm with the smaller index is indifferent between the two 

[fractions] then the firm with the larger index must weakly prefer the smaller 

[fraction]; reciprocally, if the firm with the larger index is indifferent between 

the two [fractions], then the firm with the smaller index must weakly prefer the 

larger [fraction]” (Cave and Salant 1995, 88). 

Proof.

Both statements can be verified mutatis mutandis.
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3) Unconstrained monotonicity.

If firm i is unconstrained and at least one firm is constrained,

FN F  Fi

then i’s induced profits i(F) is  decreasing in F.

4) Continuity .

i (F) is a continuous function.

Proofs.

Unconstrained monotonicity and continuity are proved in Appendix B.

Validity of the median-index theorem in our setting

We have shown a translation of the (generalized) preference assumptions 

required by Cave and Salant’s median-index theorem. This theorem has a 

crucial element in firms’ “ideal points”. Therefore, we assume that the set of 

feasible fractions (of wealth to pay) is a compact collection of non-negative 

elements. Since i (F) is continuous and F lies in a compact interval, each firm i

has an ideal point, denoted Ii, such that i (Ii) ≥ i (F) for all F. Moreover, by 

unconstrained monotonicity, Ii ≤ Fi (cf. Cave and Salant 1995, 89).

Hence Cave and Salant’s median-index theorem translates to our setting.

Proof.

Suppose there are N voters (i.e. firms), where N is an odd integer. Denote the 

median index by m = (N+1)/2. Let Im be an ideal point of firm m and let F denote 

any other quota.
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If F < Im, voters 1, 2, .., m-1, m (a majority) would at least weakly prefer Im. This 

follows since F < Im ≤ Fm ≤ min (Fm-1 , Fm-2, …, F2, F1 ) and these voters partially 

agree with m.

If instead F > Im, voters m, m+1,…, N-1, N (a majority) would at least weakly 

prefer Im. 

Recall that the cutoffs of these firms are no larger than Fm and that Im ≤ Fm. Any i

such that Fi ≤ Im must weakly prefer Im to F > Im (unconstrained monotonicity). 

As for any i such that Im < Fi ≤ Fm , such a firm at least weakly prefers Im to any 

F (Im, Fi] (since preferences partially agree) and at least weakly prefers Fi to 

any F > Fi (unconstrained monotonicity). Hence it weakly prefers Im to any F > Im

(continuity).

We have thus established the existence of at least one Condorcet winner, 

namely any ideal point (i.e. fraction) of the voter with the median index. That 

fraction is unique if two additional mild conditions hold (Cave and Salant 1995, 

90):

- the firm with the median index has a single ideal point;

- at this ideal point, the preference of every firm unconstrained at Im is strictly 

decreasing.10

                                               
10 See Cave and Salant (1995) for additional insights.
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5.- Summary and final remarks

This study has suggested a simple plausible solution to the problem of 

collecting aggregate bids for auctions of a discrete good which could be used in 

non-rival ways by several actors. It is assumed these actors participate in a 

voluntary game that develops in two stages: in the first stage, group players 

vote on a common minimum percentage of their wealth to pay; in the second 

stage, they offer at least the minimum amount voted in the previous stage and

therefore collect an aggregate bid. The study has investigated the case where 

that minimum fraction of wealth is set by majority vote (each player has one 

vote); a translation of the median-index theorem was applied to our 

circumstances and the existence of at least one Condorcet winner then 

established.

Thus, the auctioneer receives bids submitted by group players (for shared use 

of the good auctioned off) or individual players (for sole use of the good), 

compares the aggregate bid submitted by group players with the highest bid (if 

any) submitted by sole bidders, and provisionally assigns the lot accordingly. 

This continues till there is no excess demand. Then, for instance, if the lot goes 

to individual exclusive use, the winner pays the larger of the next-highest sole-

use bid or the total of the shared-use bids; if the lot goes to shared use, each 

bidder 'pays' the smallest amount they could have bid without changing the use 

class (i.e. shared or sole use).
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Appendix A

Existence and uniqueness of a pure-strategy Nash equilibrium

Existence

Let WN = N
iw

1
  denote the sum of exogenous wealth of the N players, whose 

maximization problem is:

max b i [f(B) – c i]

s.t.

b i Fw i  .

If the constraint is not binding, the F.O.C.  requires f(B) – ci + bi f’(B) = 0; 

therefore, we get  bi = -
(B)'f

cf(B) i .

Since f’(B) < 0 , bi > 0 if f(B) – ci > 0 or, equivalently, f(B) > ci . 

If the constraint is binding, firm i contributes Fwi. 

Let βi(B) denote firm i’s best reply:

βi(B) = max 









(B)'f

c-f(B)
,Fwi

i

for B [FWN , WN].

Define β(B) = N

1
βi(B) .  Hence β(B) is the “aggregate best reply”. Since f(B) 

and f’(B) are continuous and f’(B) < 0, β(B) is a continuous function. Moreover, 

if the firm with the lowest cost of capital has positive average net benefit when 

firms contribute the minimum fraction of their wealth (i.e. f(FWN) > ci ), then the 

aggregate best-reply contribution is greater than FWN: 

β(FWN) > FWN as long as f(FWN) > ci .

Finally β(WN) ≤ WN (the maximum amount of funds that the N firms can 

contribute is their entire wealth). 
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It follows that there exists at least one fixed point B*  [FWN , WN] such that 

β(B*) = B*.

Assume that total benefit is strictly concave:

2f’ (B) + B f’’(B) < 0 for all B  [FWN , WN]; then 2f’ (B) + βi(B) f’’(B) < 0 for all B 

[FWN , WN] and each firm’s second-order condition will be satisfied whenever 

its first-order conditions hold. Hence, every fixed point of the mapping β(.) is a 

pure-strategy Nash equilibrium.

Uniqueness

We now verify that the left-hand derivative of β(.), evaluated at any fixed point 

B*, is strictly less than 1 – which implies that there exists a unique fixed point.

If firm i is unconstrained,

βi(B) = -
(B)'f

cf(B) i .

Hence β’i(B) = -







 (B)β

(B)'f

(B)''f
1 i .

Assume that, as B B* from the left, u firms are unconstrained; summing over 

the unconstrained firms we obtain:

β'(B*)- = -








 ]FW-(B*)[β
(B*)'f

(B*)''f
cou

where FWco is the aggregate contribution of the constrained firms (they must 

contribute the minimum fraction of their wealth according to F, i.e. Fwi, which 

is their best reply). 

Since f’(B*) < 0 and β(B) ≥ FWco , β'(B*)- ≤ 0 < 1 provided f’’(B) ≤ 0.

It remains to show that β'(B*)- < 1 if f’’(B) > 0.

At any fixed point, 2f’(B*) + βi(B*)f’’(B*) < 0 (since total revenue is strictly 

concave). Hence, summing over the u unconstrained firms 
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2uf’(B*) + [β(B*) - FWco] f’’(B*) < 0.

Adding the negative quantity11 2f’(B*) + β(B*)f’’(B*) to the previous inequality 

(which is negative), we obtain:

2uf’(B*) + [β(B*) - FWco] f’’(B*) + 2f’(B*) + β(B*)f’’(B*) < 0

or, equivalently, 

2f’(B*) [u + 1] + 2  






 

2

FW
*Bβ

co f’’(B*) < 0 .

Dividing by - 2f’(B*) > 0 we get

- [u + 1] -
(B*)'f

(B*)''f  






 

2

FW
*Bβ

co < 0

or, equivalently,

-  








 ]
2

FW
*B[β

(B*)'f

(B*)''f co
u < 1.

Since 
(B*)'f2

(B*)''f  FWco
< 0 we obtain

-  








 ]
2

FW
*B[β

(B*)'f

(B*)''f co
u + 

(B*)'f2

(B*)''f  FWco < 1

or, equivalently,

-








 ]FW-(B*)[β
(B*)'f

(B*)''f
cou < 1; hence β'(B*)- < 1.

Appendix B

Unconstrained monotonicity and convexity of the set of fractions binding on firm i

Let B(F) denote the aggregate contribution offered by firms bidding for 

unlicensed spectrum in the unique Nash equilibrium induced by fraction F (set 

                                               
11 Recall total revenue is strictly concave and β(B*) = B*.
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by majority-rule vote)12 and let i be an unconstrained bidder at F. Firm i’s profits 

are:

i = {f (B(F)) – c i} . b i (B(F)).

A change in F will affect i’s profits:


dF

dπi







  (B(F))'fb

dB

db
]c[f(B(F))

dF

dB
i

i
i .

For firm i, marginal benefit and cost are equal:

f(B(F)) + bi f’ (B(F)) – ci = 0;

hence f(B(F)) – ci = - bi f’ (B(F)) and we obtain


dF

dπi








  (B(F))'fb

dB

db
(B(F)]'fb[-

dF

dB
i

i
i









dB

db
-1

dF

dB i
(B(F))'fbi

where (B(F))'f is strictly negative.

Since bi(B) implicitly solves f(B) + bi f’ (B) – ci = 0, we can use the implicit 

function theorem to get that

(B)'f

(B)''fb(B)'f

dB

db ii 


and, since total benefit is strictly concave, we obtain

1 -
(B)'f

(B)''fb(B)'2f

dB

db ii 
 > 0 .

Hence 








dB

db
-1

i
(B(F))'fbi < 0 and

sgn 
dF

dπi - sgn 
dF

dB .

To show that 
dF

dπi ≤ 0 as long as some firm is constrained (clearly 
dF

dπi = 0 if no 

firm is constrained), we verify that 
dF

dB > 0.

                                               
12 Henceforth, to simplify our notation, we will write B(F) without an asterisk.
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Let  be the set of unconstrained firms and u the number of elements in this 

set. For each unconstrained firm i  we have  f(B) + bi f’ (B) – ci = 0. Also, let 

 be the set of constrained firms and v be the number of its elements (v = N – u

and FWco is their aggregate contribution, i.e. FWco = 
v

j

1

Fw , where j is a firm in 

 ). The aggregate contribution collected by the unconstrained bidders is 
u

i

1

b = 

B - FWco .

Summing over the set of unconstrained firms, we obtain

uf(B) + [B - FWco] f ‘ (B) - 
u

i

1

c = 0.

Total differentiation gives:

dF

dB = 
(B)''f)FW-(B(B)'f1)(

(B)'fW

co

co

u 

which is zero if no firm is constrained (Wco = 
v

j

1

w = 0).

Suppose Wco =
v

j

1

w > 0 . Since f ‘(B) < 0 and 








 ]FW-[B
(B)'f

(B)''f
cou > - 1 (cf. 

Appendix A), we get 

(u + 1)f ‘(B) + [ coFW-B ] f ’’(B) < 0. Hence 
dF

dB > 0.

Following the reasoning in Cave and Salant (1995), we now use these results to 

verify that a firm unconstrained at F will remain unconstrained at any looser 

fraction Fl (where  Fl < F). For this it is sufficient that the optimal bid of any 

unconstrained firm i decrease no faster than the minimum contribution 

required by the voting committee Fwi, as F decreases:

dbi ≥ dFwi  (note that there are both negative); hence 
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dF

dbi =
dB

dbi








dF

dB ≤ wi .

Since 
(B)'f

(B)''fb(B)'f

dB

db ii 
 and 

dF

dB = 
(B)''f)FW-(B(B)'f1)(

(B)'fW

co

co

u 
, we get 

that

dF

dbi = -
(B)''f)FW-(B(B)'f1)(

(B)]'f(B)''f[bW

co

ico

u 
 ≤ wi

where u ≥ 1 and (u + 1)f ‘(B) + [ coFW-B ] f ’’(B) < 0.

If  f ’’(B) ≤ 0 then (B)]'f(B)''f[bW ico < 0 and -
(B)''f)FW-(B(B)'f1)(

(B)]'f(B)''f[bW

co

ico

u 
 ≤ wi

clearly holds in this case (wi ≥ 0). 

Suppose instead that  f ’’(B) > 0. Since total benefit is concave, the following 

inequality holds:

B f’’(B) + 2f’ (B) + (B)'f)1(
w

W







  u

i

co < 0.

This is equivalent to

B f’’(B) + (B)'f)1(
w

W







  u

i

co < 0

which can be manipulated to get 

f’’(B) +   (B)'f)FWB(WFw  coicoi w  ico u w)1(W  < 0

(note that wiB = FwiWco + wi [B – FWco]).

Re-arranging we obtain:

f’’(B) FwiWco + f’’(B) wi [B – FWco] + f ‘(B) Wco + f ‘(B) (u + 1) wi < 0

or, equivalently,

Wco [f’’(B) Fwi + f ‘(B)] + wi {f’’(B) [B – FWco] + f ‘(B) (u + 1)} < 0.

Therefore, - Wco [f’’(B) Fwi + f ‘(B)] > wi {f’’(B) [B – FWco] + f ‘(B) (u + 1)}. 

Since {f’’(B) [B – FWco] + f ‘(B) (u + 1)} < 0 we get 

-
(B)''f)FW-(B(B)'f1)(

(B)]'fFw(B)''[fW

co

ico

u 
 < wi
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where Fwi ≤ bi. Hence the following inequality holds:

-
(B)''f)FW-(B(B)'f1)(

(B)]'f(B)''f[bW

co

ico

u 
 ≤ wi . 

This confirms that a firm unconstrained at F will remain unconstrained at any 

looser quota.
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