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Abstract
We investigate a closed economy in which the production depends essentially on
physical capital, natural capital and labor. Contrary to the standard literature, we
assume that the labor growth rate is non constant but variable over time. We show
that the economy is sustainable in the long run if human activities have a net zero
or positive effect on the environment. Moreover, for any given tax rate (or MPC,
i.e. marginal propensity to consume), we derive the set of sustainable MPCs (or
tax rates).

1. Introduction
The works by Solow (1956) and Swan (1956) are an important milestone in the theory
of economic growth. Their contributions have sparked substantial interest in a class of
growth models, known as neoclassical growth models, in which capital and labor can
be continuously substituted for each other. Most popular intermediate macroeconomic
textbooks almost uniformly start with some variants of the Solow-Swan model (see,
for example, Hall and Taylor, 1997; Mankiw, 1997; Romer, 1996), but, as noticed by
Dasgupta (1996), in those books there is no mention of environmental resources. The
implicit assumption, clearly undesirable, is that natural resources are neither scarce
now nor scarce in the future. An effort to address this omission by treating natural cap-
ital as an essential factor of production was done by Tran-Nam (2001). By modeling
the natural capital stock as a renewable resource, in the sense that damages done to the
environment production and consumption externalities are reversible, and can be cor-
rected by collective maintenance actions, he showed that the economy is sustainable
in the long run if human activities have a positive effect on the environment. A natu-
ral question to be asked in this model is what the impact of changes in the population
growth rate would be. For this purpose, we turn to an examination of the consequences
of relaxing the assumption of constant population growth rate in Tran-Nam’s paper
(2001). Following Guerrini (2006), we assume that the labor growth rate is variable
over time and controllable subject to be between prescribed upper and lower limits. In
this framework, we find that the economy is sustainable in the long run if human activ-
ities have a net zero or positive effect on the environment. Moreover, for any given tax
rate (or marginal propensity to consume, say MPC), we derive the set of sustainable
MPCs (or tax rates). Finally, note that our paper focuses on economic theory, so all
practical problems associated with measuring natural capital are assumed away.
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2. The model
We consider a closed economy in continuous time equipped with the aggregate pro-
duction function

Y = F (K, E,L) = KηEθL1−η−θ, η, θ ∈ (0, 1),

where Y is the flow of output, K is the physical capital stock, E is the natural capital
stock, and L is the employed population. Time index is omitted to ease the burden
of notations. In addition, we assume that 0 < η + θ < 1, so that this production
function exhibits constant returns to scale, it has positive and diminishing returns, and
it satisfies the Inada conditions. Output is a homogenous good that can be consumed,
saved or spent to maintain or improve the environment. Since the economy is closed,
households cannot buy foreign goods or assets, as well as sell home goods or assets
abroad. Therefore, output equals income, and the amount invested I equals the amount
saved S. The national accounting can be written as

Y = C + S + T (2.1)

where C and T represent consumption and tax, respectively. Let us assume that the tax
revenue is a constant fraction of output, i.e.

T = τY, (2.2)

with τ ∈ (0, 1) the tax rate, and the consumption is a constant fraction of disposable
income, i.e.

C = a(Y − T ), (2.3)

with a ∈ (0, 1) the marginal propensity to consume (MPC). It is immediate to check
that C = a(1 − τ)Y . Next, we assume that capital depreciates at the constant rate
δ > 0. This means that at each point in time a constant fraction of the capital stock
wears out, and hence it can no longer be used in production. Consequently, the net
increase in the stock of physical capital at a point in time equals gross investment less
depreciation, i.e.

.

K = I − δK, (2.4)

where a dot over a variable denotes differentiation with respect to time. Since I = S,
equations (2.1), (2.2) and (2.3) yield that the capital accumulation equation (2.4) takes
the form .

K = (1− a)(1− τ)Y − δK. (2.5)

Regarding the environmental stock E, let us assume that its evolution over time is
described by the following differential equation

.

E = αE + φT − βY − γC, (2.6)

where α, φ, β and γ are some constants. Essentially, we are assuming that the instanta-
neous rate of change of the environmental stock is determined linearly by three forces.
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In case there is no human economic activity, then E changes over time at the expo-
nential rate α, with the parameter α positive, zero or negative according to whether the
environment grows, remains unchanged or decays autonomously over time. In case
there is human economic activity, then we have depletion of β units of E for every unit
of the final good produced (the production of the final good causes external damages to
the environment), and also that each unit of the final good consumed depletes γ units of
the environmental stock. Furthermore, environmental programs, funded by the entire
tax revenue, generate φ units of the environmental stock per unit of the tax spent. The
government runs a balanced budget at any instant of time, the taxation revenue is cost-
lessly collected and there are no government failures. It also seems reasonable to as-
sume that φ > β, because production externalities are typically unintentional whereas
environmental actions are well planned and executed. Finally, note that equations (2.2)
and (2.3) yield equation (2.6) to be rewritten as

.

E = αE + [(φ + γa)τ − (β + γa)]Y. (2.7)

Since we want to frame the model in per capita terms, we define physical capital stock
per capita, natural capital stock per capita, consumption per capita, and income per
capita as k, e, c, y = f(k, e), respectively. By differentiation we have that the instan-
taneous change in the physical capital stock per capita and in the natural capital stock
at any moment are given by

.

k =
d(K/L)

dt
=

.

KL−K
.

L

L2
⇒

.

k =

.

K

L
− k

.

L

L
, (2.8)

.
e =

d(E/L)
dt

=

.

EL− E
.

L

L2
⇒ .

e =

.

E

L
− e

.

L

L
. (2.9)

Next, dividing by L both sides of equations (2.5) and (2.7) yield
.

K

L
= (1− a)(1− τ)f(k, e)− δk, (2.10)

.

E

L
= αe + [(φ + γa)τ − (β + γa)]f(k, e), (2.11)

Therefore, substituting (2.10) and (2.11) in (2.8) and (2.9), respectively, we obtain




.

k = (1− a)(1− τ)kηeθ − (δ +
.

L/L)k,

.
e = [(φ + γa)τ − (β + γa)]kηeθ − (

.

L/L− α)e.
(2.12)

Following Guerrini (2006), and contrary to what done by Tram-Nam (2001), let us
assume the labor growth rate to be non constant over time but variable, i.e.

.

L/L =
n(t). More precisely, let n(t) be controllable subject only to be between prescribed
upper and lower limits, i.e. α ≤ n(t) ≤ M , for all t, and such that there exists
lim

t→∞
n(t) = n∞ < ∞. Moreover, let us assume that L(0) = 1, and there exists

lim
t→∞

L(t) = L∞ ≤ ∞, L∞ 6= 0.
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Since eαt < L(t) < eMt, for all t, we can conclude that

L∞ = ∞ if α > 0, 1 ≤ L∞ ≤ ∞ if α = 0, 0 < L∞ ≤ ∞ if α < 0.

Remark 1. In case of a constant rate of population, i.e.
.

L/L = n, then L(t) = ent,
for all t, and so L∞ = ∞ no matter who is α.

Remark 2. If L∞ < ∞, then n∞ = 0. This statement follows from the following
result: ”Let ϕ : [x0, +∞) → R be a differentiable function such that there exist (finite
or infinite) the limits lim

x→+∞
ϕ(x) = l, lim

x→+∞
ϕ′(x) = n. If l is finite, then n = 0.”

Proof: By Lagrange’s theorem, ϕ(x + 1)− ϕ(x) = ϕ′(ξx), for some ξx ∈ (x, x + 1).
Since lim

x→+∞
ξx = +∞, we have that lim

x→+∞
ϕ′(ξx) = lim

x→+∞
ϕ′(x) = n. Consequently,

lim
x→+∞

[ϕ(x + 1)− ϕ(x)] = n. The statement follows noting that l finite also implies

lim
x→+∞

[ϕ(x + 1)− ϕ(x)] = 0.

Setting A = (1−a)(1−τ) > 0, B = (φ+γa)τ−(β+γa), and replacing
.

L/L = n(t)
in (2.12), we have that the model’s economy is described by the following system of
differential equations

{ .

k = Akηeθ − [δ + n(t)]k,
.
e = Bkηeθ − [n(t)− α]e.

(2.13)

Given k0 = k(0) > 0, and e0 = e(0) > 0, this Cauchy problem has a unique solution,
say (k(t), e(t)), defined on [0,∞) (see Birkhoff and Rota, 1978).

3. Long run sustainability conditions
In the conventional Solow model, there is no mention of environmental resources. The
implicit assumption is that environmental stock is fixed and it does not depend on
human activities. Thus, an economy is long run (infinite time horizon) sustainable
so long as per capita consumption c equals or exceeds a given subsistence consump-
tion level c̄ > 0. This condition can be written in terms of output per worker as
f(k(t), e(t)) = kηeθ ≥ c̄/[a(1− τ)], for all t. In particular, this requires k and e to be
both at least positive. In the present model, the survival of the economy depends among
other things on its ability to manage the environment, and life can only be sustained
if human beings enjoy a sufficient amount of environment. Therefore, considering the
environment as a private good, i.e. no joint consumption, then long run sustainability
also requires that the environmental stock never falls below a minimum life-sustaining
level ē > 0, i.e. e(t) ≥ ē, for all t. We are now going to show that a necessary condi-
tion for the economy to be sustainable in the long run will depend crucially on the sign
of B.

Proposition 1. Let B = 0. For all t, the model’s economy is described by

e(t) = e0ξ
αtL(t)−1, (3.1)

4



k(t) = ξ−δtL(t)−1



k1−η

0 + Aeθ
0




t∫

0

ξ[αθ+(1−η)δ]tL(t)1−(η+θ)dt








1
1−η

, (3.2)

where ξ denotes the exponential function.

Proof. Plugging B = 0 in (2.13) yields a dynamical system formed by the following
two equations:

.
e = −[n(t)− α]e, and

.

k = Akηeθ − [δ + n(t)]k. A simple integration
of the first linear differential equation gives e(t) = e0ξ

αtL(t)−1, which substituted in
the second differential equation yields

.

k = A
[
e0ξ

αtL(t)−1
]θ

kη − [δ + n(t)]k. This
is a Bernoulli equation, whose solution is known to be given by

k(t) = ξ
−

t∫
0
[δ+n(t)]dt



k1−η

0 +


 t∫

0

A
[
e0ξ

αtL(t)−1
]θ

ξ
(1−η)

t∫
0
[δ+n(t)]dt

dt








1
1−η

,

= ξ−δtL(t)−1

{
k1−η
0 + Aeθ

0

[
t∫
0

ξ[αθ+(1−η)δ]tL(t)1−(η+θ)dt

]} 1
1−η

.

Proposition 2. Let B = 0. Then the function e(t) is monotone decreasing, and we have
that lim

t→∞
e(t) = 0 if α > 0, α < 0, or α = 0 and L∞ = ∞, while lim

t→∞
e(t) = e0L

−1
∞

if α = 0 and L∞ < ∞.

Proof. Since
.
e = −[n(t)−α]e, the first part of the statement follows immediately from

the hypothesis that n(t) > α, for all t. Next, set lim
t→∞

e(t) = e∞. If α = 0, then (3.1)

becomes e(t) = e0L(t)−1, and so we have that e∞ = 0 if L∞ = ∞, and e∞ = e0L
−1
∞

otherwise. If α < 0 or α > 0, then from (3.1) and the inequality L(t) > ξαt, for all t,
we get e∞ = 0.

Proposition 3. Let B = 0. Then the function k(t) is convergent in the long run. We
have that lim

t→∞
k(t) = 0 if α > 0, α < 0, or α = 0 and L∞ = ∞, while

lim
t→∞

k(t) =
[

Aeθ
0

(1− η)δLθ∞

] 1
1−η

,

if α = 0 and L∞ < ∞.

Proof. Let us rewrite (3.2) as

k(t)1−η =
k1−η
0 + Aeθ

0

[
t∫
0

ξ[αθ+(1−η)δ]tL(t)1−(η+θ)dt

]

ξ(1−η)δtL(t)1−η
. (3.3)

Let α ≥ 0. As t grows to infinity, the right hand side of (3.3) leads to an indeterminate
form since both its numerator and denominator will go to infinity. This fact is immedi-
ate for the denominator as L∞ ≤ ∞, L∞ 6= 0, and 1− η > 0, while for the numerator
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it follows from the inequality

t∫

0

ξ[αθ+(1−η)δ]tL(t)1−(η+θ)dt ≥
t∫

0

ξ[αθ+(1−η)δ]tdt =
ξ[αθ+(1−η)δ]t − 1
αθ + (1− η)δ

,

as αθ + (1 − η)δ > 0. Note that L(t) ≥ 1 since L(t) ≥ ξαt, for all t. An application
of Hopital’s rule yields

lim
t→∞

k(t)1−η =
Aeθ

0

(1− η)
lim

t→∞
1

[δ + n(t)]
ξαθt

L(t)θ
=

Aeθ
0

(1− η)(δ + n∞)

[
lim

t→∞
ξαt

L(t)

]θ

.

In conclusion, it can be concluded from (3.3) and what done above that

lim
t→∞

k(t) =

{
Aeθ

0

(1− η)(δ + n∞)

[
lim

t→∞
ξαt

L(t)

]θ
} 1

1−η

. (3.4)

The statement of our Proposition is now immediate if α = 0 (with L∞ finite or infinite),
or if α > 0 (it is L∞ = ∞ since L(t) > ξαt, for all t). Let us now consider the last case,
i.e. α < 0. As t →∞, the denominator of the right hand side of (3.3) is still divergent
since 0 < L∞ ≤ ∞, while the behavior of its numerator is undetermined. However,
note that if it converges, or it does not exist, then we still have that lim

t→∞
k(t)1−η = 0,

whether if it is infinite, we may use again Hopital’s rule and get the expression in
(3.4). The statement will follow considering the two cases L∞ 6= 0 and L∞ = ∞, and
recalling that ξαt → 0.

Proposition 4. Let B < 0. The function e(t) is monotone decreasing. As t grows to
infinity, e(t) is convergent to zero if α > 0, α < 0, or α = 0 and L∞ = ∞, and it does
not diverge to infinity if α = 0 and L∞ < ∞.

Proof. The first part of the statement is immediate from B < 0 and n(t) > α, for all
t, since we have from (2.13) that

.
e = Bkηeθ − [n(t)− α]e. Note that this differential

equation cannot be solved in terms of elementary functions, as done before. A common
technique in this case is to compare the unknown solutions of the given equation with
the known solutions of another, i.e. to use the so-called Comparison theorems. Using
the following one (see Birkhoff and Rota, 1978) ”if ui(t), i = 1, 2, is the solution
of the Cauchy problem

.
u = ϕi(t, u), u(0) = u0, and ϕ1(t, u) ≤ ϕ2(t, u), for all

(t, u), then u1(t) ≤ u2(t), for all t”, together with the previous Propositions gives
the statement of the second part of our Proposition. For example, from the inequality
.
e = Bkηeθ − [n(t) − α]e < −[n(t) − α]e =

.
e, we obtain that e(t) < e0ξ

αtL(t)−1,
for all t. Thus, we have the statement by Proposition 2.

We can now state the following result.

Theorem 1. If human activities have a net zero or negative effect on the environment
in every time period, i.e. if B ≤ 0, then the economy is unsustainable in the long
run unless α = 0 and L∞ < ∞. If B = 0, α = 0 and L∞ < ∞, the economy is
sustainable.
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Remark 3. In case of a constant population growth rate (recall L∞ = ∞, for any α)
Binh Tran-Nam (2001) showed that the economy is always unsustainable in the long
run if B ≤ 0. Moreover, a necessary condition for the economy to be sustainable in
the long run is that B > 0, i.e. if human activities produce a net beneficial effect on the
environment for every time period.

4. Tax rate and sustainability
Theorem 1 implies that a sufficient condition for the economy to be sustainable in the
long run is that B = 0, α = 0 and L∞ < ∞, while a necessary condition is that
B > 0, or B < 0, α = 0 and L∞ < ∞. Mathematically, this can be formulated as
follows.

Lemma 1.

• For any given tax rate τ , B R 0 if and only if a Q (φτ − β)/[γ(1− τ)].

• For any given MPC a, B R 0 if and only if τ R (aγ + β)/(aγ + φ).

Proof. The statement is immediate recalling that B = (φ + γa)τ − (β + γa).

Remark 4. Note that the number (φτ − β)/[γ(1− τ)] is ≤ 0 if and only if τ ≤ β/φ,
it belongs to the interval (0, 1) if and only if β/φ < τ < (β + γ)/(φ + γ), and it is
≥ 1 if and only if τ ≥ (β + γ)/(φ + γ).

Let us assume that the tax rate is given, and let B > 0. Bearing in mind that both tax
rate and MPC must lie within the open interval (0, 1), and that φ > β, it can be seen
from Lemma 1 and Remark 3 that if the tax rate is too small, i.e. τ ≤ β/φ, then no
positive MPC is sustainable, if the tax rate is sufficiently large, i.e. τ ≥ (β+γ)/(φ+γ),
then a sustainable MPC can take any value in the interval (0, 1), and if β/φ < τ <
(β + γ)/(φ + γ), then (0, (φτ − β)/[γ(1− τ)]) is the set of sustainable MPCs.

We can now state the following Proposition.

Proposition 5.

• For any given tax rate τ ∈ (0, 1) :

i) if τ ≤ β/φ, then the set of sustainable MPCs is empty if B > 0, while it is the
interval (0, 1) if B < 0, α = 0 and L∞ < ∞;

ii) if β/φ < τ < (β + γ)/(φ + γ), then the set of sustainable MPCs is the interval
(0, (φτ − β)/[γ(1− τ)]) if B > 0, while it is ((φτ − β)/[γ(1− τ)], 1) if B < 0,
α = 0 and L∞ < ∞;

iii) if τ ≥ (β + γ)/(φ+ γ), then the set of sustainable MPCs is (0, 1) if B > 0, while
it is empty if B < 0, α = 0 and L∞ < ∞.

• For any given MPC a ∈ (0, 1), the set of sustainable tax rates is the interval ((aγ +
β)/(aγ + φ), 1) if B > 0, and the interval (0, (aγ + β)/(aγ + φ)) if B < 0, α = 0
and L∞ < ∞.
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• If B = 0, α = 0 and L∞ < ∞, then, for any given tax rate, the set of sustainable
MPCs reduces to a = (φτ − β)/[γ(1− τ)]. Similarly, for any given MPC, the set of
sustainable tax rates consists of only one element, τ = (aγ + β)/(aγ + φ).

Remark 5. Some interesting things can be inferred from the previous Proposition.
For example, if B > 0, we deduce that an increase (resp. a decrease) in the tax
rate in the relevant range widens (reps. narrows) the choice of sustainable MPCs,
or alternatively an increase (resp. a decrease) in the MPC narrows (resp. widens) the
choice of sustainable tax rates. We also note that these results are intuitively clear.
In fact, more (resp. less) resources are spent to repair the environment, then, keeping
the economy sustainable, a larger (resp. smaller) fraction of the remaining output is
available for consumption, or alternatively if a larger (resp. smaller) fraction of output
is consumed, then the range sustainable tax rates becomes narrower (resp. wider).
Similarly for the cases B ≤ 0.

5. Conclusion
In this paper, we build a two-sector growth model with physical and natural capital
accumulation in order to analyze the relationship between economic development and
long run sustainability. Contrary to the existing literature, we assume that population
growth rate is non constant but variable over time. In this framework, we find that the
economy is sustainable in the long run if human activities have a net zero or positive
effect on the environment. Moreover, for any given tax rate (or MPC, i.e. marginal
propensity to consume), we derive the set of sustainable MPCs (or tax rates).
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