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Abstract

We consider a procurement contract between a principal and an agent who
is privately informed about both the expectation and the volatility of the pro-
duction cost. After the contract is drawn up, the agent privately observes the
realized cost as well. We evidence that, in this setting, the principal faces a
multi-dimensional screening problem in which relevant decision variables (that
a¤ect the agent�s incentives) are the expected production and the expected
di¤erence between production levels in di¤erent states of the world. We char-
acterize the optimal contract and show that its shape depends critically on
how the marginal surplus compares with the expected spread between high
and low cost realizations.
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1 Introduction

Most of the studies on principal-agent relationships assume that the agent holds

private information about some characteristics (e.g. cost, demand, both cost and

demand) that a¤ects the value of the project he is required to develop for the

principal.1 They further assume that, when parties meet at the contracting table,

the agent�s information about the value of the project is perfect.

Actually, in real world, a large variety of projects have an uncertain return.

Take, for instance, a concession contract between the government and a private �rm

for operating a highway in return for a toll �xed by the government. Typically, at

the contracting stage, the net return from operating the highway is uncertain to all

parties. Under these circumstances, the information advantage of the �rm rests on

the latter�s ability to form more reliable estimates of the value of the project. The

government will thus need to construct an appropriate contractual o¤er that induces

the �rm to reveal its true estimate.

Despite situations of this kind are widespread in reality, the literature has de-

voted little attention to the design of optimal contracts for the accomplishment of

projects that have an uncertain outcome in situations where the agent is prively

informed about the parameters of the outcome distribution (namely, expected value

and volatility).

The aim of this study is to characterize the optimal contract for a situation in

which the agent is required to perform some production for the principal and has

private information about the expected cost of production and its volatility. This is

a two-stage relationship. At the �rst stage, the contract is signed under uncertainty

and private information about the cost distribution parameters. At the second stage,

the agent observes the realized cost so that uncertainty is resolved and production

takes place.

Our analysis is related to the narrow literature about multidimensional screening

mechanisms. Armstrong and Rochet [2] consider a setting in which the agent exerts

two activities and holds private information about the technologies that are used to

accomplish these two tasks. The principal sets the level of production for the two ac-

tivities so that the agent has no incentive to misreport on any of the two dimensions.

Unlike Armstrong and Rochet [2], we take the agent to undertake one sole activity,

with which one sole production level is associated. Nevertheless, our results reveal

that, because of the presence of uncertainty, the agent�s incentives depend on two

measures, namely the expected production and the expected di¤erence between the

1See the classical work of Baron and Myerson [3] for the case of private information about the
technology.
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high and the low production level that the principal commands in di¤erent states of

the world. Therefore, as in Armstrong and Rochet [2], the principal disposes of two

instruments to provide good incentives to the agent. However, unlike in their set-

ting, the two instruments are tied together by the circumstance that they relate to a

unique production activity. Because of this, despite a larger number of instruments

is at hand, more restrictions appear in terms of contract design. In particular, the

principal needs to concede higher rents to induce information revelation. That is,

agency costs are more important in the framework we consider.

A multidimensional screening problem is analyzed also in Armstrong [1]. The

latter characterizes the optimal contract with private information on demand and

cost functions. His model is close to ours in that the agent possesses two pieces

of private information but performs one single activity. However, unlike in our

framework, the principal relies upon one sole instrument, namely the price, to screen

types. This restriction follows from the circumstance that in Armstrong [1] there

is no uncertainty in the accomplishment of the task, whereas we refer to situations

in which, at the contracting stage, even the agent does not know whether a high or

low cost will realize.

TO BE COMPLETED

2 The model

We consider a procurement contract between a principal (P) and an agent for

the production of q units of some good in turn of a payment t. The expected

marginal cost of production � is drawn from the set f�L; �Hg with commonly known
probabilities � and 1� �:We denote �� = �H � �L > 0: The true cost realizes after
the contract is signed and before production takes place. It can be either � + � or

� � � with equal probabilities.2 The uncertain part of the cost � is drawn from

the set f�L; �Hg with commonly known probabilities � and 1 � �: We also denote
�� = �H � �L > 0: We hereafter refer to the generic realization of the two cost

parameters as to �i and �j; with i; j 2 fL;Hg : We assume that �L; �H ; �L and �H
are such that �� > �� i.e., we require that the spread between the two possible

expected unit costs is more important than that between the two possible values

of the uncertainty parameter. This is reasonable in that more weight is put on the

expected value of the unit production cost than on its volatility.

2By attaching equal probabilities to the two possible events, we prevent that the otherwise
asymmetric distribution of high and low marginal costs impose structure on the optimal contract.
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Information structure When the contract is drawn up, the agent enjoys an in-

formation advantage in terms of cost expectation �i; i 2 fL;Hg ; and cost volatility
�j; j 2 fL;Hg ; both of which he observes privately before sitting at the con-
tracting table. We denote ij the agent�s type for any realized pair (�i; �j) and

� � fLL;LH;HL;HHg the set of all feasible types. The agent still has an in-
formation advantage when the state of nature realizes as he also observes privately

whether the latter is �i+ �j or �i� �j: In the sequel, we refer to these two stages of
information asymmetry as to the "�rst" and "second" period.

Payo¤s under symmetric information Let (q
ij
; tij) and (qij; tij) the allocation

to be implemented respectively in state �i � �j and �i + �j; for all ij 2 �: In the
two states of nature, the agent�s ex post pro�t is respectively given by

�ij = tij � (�i + �j) qij (1)

�ij = tij � (�i � �j) qij: (2)

In the �rst period, his payo¤ is written

�ij =
1

2
(�ij + �ij): (3)

Production of q units of the good by the agent yields to P gross surplus S (q) ;

which is taken to be three times di¤erentiable to ease the analysis. Speci�cally, S (q)

is such that S 0 > 0; S 00 < 0 and S 000 is �nite. The �rst-period payo¤ of P is given by

Vij =
1

2

h
(S(qij)� tij) + (S(qij)� tij)

i
: (4)

The programme of the principal The Revelation Principle applies. P can

restrict attention to truthful direct revelation mechanisms, in which either of the

allocations (q
ij
; tij) and (qij; tij) is implemented depending on the realized state of

nature. These allocations are chosen by solving the following programme denoted
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� :

Max
(q
ij
;tij);(qij ;tij)

W �
X
i=L;H

X
j=L;H

1

2
Eij

h
(S(qij)� tij) + (S(qij)� tij)

i
subject to

�ij � 1

2

n�
ti0j0 � (�i + �j) qi0j0

�
+
h
ti0j0 � (�i � �j) qi0j0

io
; 8ij; i0j0 2 �(5)

�ij � �ij + 2�jqij; ij 2 � (6)

�ij � �ij � 2�jqij; ij 2 � (7)

�ij � 0; ij 2 �: (8)

Condition (5) represents the �rst-period incentive constraints, (6) and (7) the second-

period incentive constraints in the two states of nature and (8) the participation

constraints for all possible types.

Timing To sum up, the game between P and the agent unfolds as follows. The

agent observes privately �i and �j: P o¤ers to the agent the menu of contractsn
(q
ij
; tij); (qij; tij)

o
; 8ij 2 �: The agent reports ij to P and the contract targeted

to type ij is signed. The agent observes privately either �i��j or �i+�j and reports
the state to P. Accordingly, either the allocation (q

ij
; tij) or the allocation (qij; tij)

is e¤ected.

2.1 Incentive-compatibility conditions

The second-period incentive constraints (6) and (7) require that q
ij
� qij i.e., in

the good state (�i � �j) a larger quantity is to be produced than in the bad state
(�i + �j):

Before looking at the �rst-period incentive constraints, it is useful to write the

expected total cost of the ij�agent as

EC = �iqij � �jrij;

where

qij �
1

2
(q
ij
+ qij) and rij �

1

2
(q
ij
� qij)

respectively denote the expected sum and the expected di¤erence of quantities in

the good and bad states. It is straightforward to see that EC increases with the

expected production qij and decreases with the expected production di¤erence rij;

which helps understand how incentives should be given to the agent.3

3Having the expected cost separable between the two dimensions of asymmetric information
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From the �rst-period incentive constraints we deduce, as usual, a set of conditions

on qij and rij: First, to prevent the agent from misreporting on one sole dimension,

whether i or j; production should be chosen such that

qLj � qHj 8j 2 fL;Hg and riH � riL 8i 2 fL;Hg : (9)

That is, both the expected production and the expected production di¤erence should

be higher for more e¢ cient types. Second, to prevent the agent from cheating simul-

taneously on both information pieces (�i and �j); the following additional conditions

should be satis�ed:

��qLH +��rLH � ��qHL +��rHL (10)

��qLL +��rHH � ��qHH +��rLL: (11)

Observe that di¤erent rankings of q0ijs and r
0
ijs, all satisfying (9), (10) and (11),

are compatible with the agent�s incentive constraints. Albeit it is not immediately

apparent which incentive constraints are binding in �; it is possible to assess that

any incentive-compatible contract is to be structured such that the following lemma

holds.

Lemma 1 At the solution to �; the conditions

min fqLH ; qLLg � max fqHH ; qHLg (12)

min frLH ; rHHg � max frLL; rHLg

are all necessary, except any of the following: qLL � qHH ; qLH � qHL; rHH � rLL;
rLH � rHL.

Proof. See Appendix A.
The lemma evidences for which types expected production and expected pro-

duction di¤erences cannot be unambiguously ranked based on the agent�s incentive

constraints. Any solution of �must be such that qij and rij are ranked in a particular

order among those in (12) :

3 The �rst-best benchmark

At the �rst-best outcome (FB hereafter), quantities are such that S 0(q�
ij
) = �i��j

and S 0(q�ij) = �i + �j; whereas ��ij = 0; 8ij 2 �; the star being appended to

enables us to avoid complications with participation constraints, which arise in non-separable
contexts (see Armstrong, 1999).
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indicate FB values. Importantly, the speci�c ranking of q0ijs and r
0
ijs that arises

at the FB solution depends on the shape of P�s marginal surplus. In particular,

we have qLH � qLL; qHH � qHL; rLH � rHH and rLL � rHL if and only if the

marginal surplus declines with quantity at a decreasing rate (i.e. S 0 is convex).

These inequalities are all reversed, instead, when the marginal surplus declines with

quantity at an increasing rate (i.e. S 0 is concave). In the sequel of the analysis, it will

become apparent that the shape of S 0 is also crucial when parties are asymmetrically

informed, in which case it dictates the optimal distortions and thus the rents to be

given to the various agent�s types.

4 The optimal contract

To characterize the optimal contract we need to pin down the solution to �: In

multi-dimensional problems, the usual approach to pin down the solution is to make

a reasonable guess at the relevant incentive constraints" and then check that the

solution obtained for this "relaxed" problem satis�es the whole set of constraints.

If so, then this is also the solution to the general problem (compare Armstrong [1]

and Armstrong and Rochet [2], for instance). This is the strategy we follow in the

sequel of the analysis.

4.1 Preliminary

If in our framework it were possible to exactly replicate the "standard" relaxed

problem described by Armstrong and Rochet [2], then our best guess at relevant

constraints would be that binding are the participation constraint of the least e¢ -

cient type, the incentive constraints whereby neither of the intermediate types LL

and HH being tempted to mimic type HL;4 the tightest incentive constraint of the

most e¢ cient type LH: This would yield the following list of rents:

�HL = 0 (13)

�HH = ��rHL (14)

�LL = ��qHL (15)

�LH = max f��qHH +��rHL; ��qHL +��rLL; ��qHL +��rHLg (16)

Let us denote this relaxed problem �AR; which stays for relaxed problem "à la

Armstrong and Rochet [2]". If the solution to �AR were to satisfy all the other

constraints as well, then it would be also the solution to �; provided the rents

4By "intermediate" types we mean types displaying an intermediate degree of cost e¢ ciency.
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above are least costly to the principal (hence, they are the "ideal" ones). The

lemma hereafter states that the guess of Armstrong and Rochet [2] does not suit the

situation we consider.

Lemma 2 The solution to �AR is not the solution to �:

Proof. See Appendix B.1.
Although the details of the proof of this result are reported in the Appendix, it is

worth suggesting that, to understand it fully, one should focus on the intermediate

types LL and HH: If P assigns the rents (13) to (16), then the incentive constraint

that prevents type LL from mimicking type HH is written

�� (rHH � rHL) � �� (qHH � qHL)

or, equivalently,

(�� ���) (q
HL
� q

HH
) + (�� +��) (qHL � qHH) � 0

where we have used the de�nitions of qij and rij: The di¤erence (qHL � qHH) is
negative (i.e. q

HH
> q

HL
) both because type HH is more e¢ cient in the good state,

so that the �rst-best quantities are ranked as q�
HH

> q�
HL
; and because P distorts

the HL�quantity downwards so as to contain the information rents.5 Therefore,

for the incentive constraint to be satis�ed, it must be the case that the di¤erence

(qHL�qHH) is positive. This involves that the quantities assigned to type HL in the
two states of nature are more dispersed than those assigned to type HH: It follows

that rHL > rHH : However, if production is set so as to satisfy the latter inequality,

then it is not possible to prevent type HL from selecting the HH�contract without
conceding an information rent to this type.

It is thus clear that the initial guess at relevant incentive constraints was not

correct. We hereafter present the guess that is appropriate to our framework.

4.2 The relaxed problem

We have seen that in �AR both intermediate types (HH and LL) are tempted to

mimic the least e¢ cient type HL: We shall now consider another relaxed problem

in which either such type has an incentive to mimic the type that is immediately

below in the e¢ ciency ranking. That is, type HH would like to mimic HL and type

LL would like to mimic HH: We denote this problem �0 so as to avoid confusion

with the relaxed problem "à la Armstrong and Rochet [2]" that we have previously

5It is immediate to see that rents increase with both qHL and rHL; hence with qHL:
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discussed. In �0; the incentive constraint whereby type LL not being tempted to

mimic type HH is binding, that is

�LL = �HH +��qHH ���rHH ;

whereas type LL has no interest in pretending to be type HL: Under these circum-

stances, the rents are given by (13) and (14) together with

�LL = ��qHH +��rHL ���rHH (17)

�LH = max f��qHH +��rHL; : (18)

��qHH +��rHL +��rLL ���rHH ; ��qHL +��rHLg :

Speci�cally, the rent in (18) means that we allow type LH to be possibly attracted

by the contract of any other type.

Actually, the possibility that �LH = ��qHL + ��rHL; which occurs whenever

the most e¢ cient type LH has an incentive to mimic the least e¢ cient type HL;

can be immediately ruled out. The following lemma states this result.

Lemma 3 There exists no solution to � such that P assigns the rents (13), (14),
(17) and �LH = ��qHL +��rHL:

Proof. See Appendix B.2.
The interpretation of this result requires some caution. While Lemma 3 does

mean that type LH never has a strict preference to mimic type HL over any other

type, it does not mean that type LH cannot be indi¤erent between mimicking type

HL and any other type. That is, the rent ��qHL +��rHL can still be assigned to

the most e¢ cient type if the gain from pretending to be type HL is the same as

that from pretending to be any of the other two types.

TO BE COMPLETED
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A Proof of Lemma 1

After listing all the incentive compatibility constraints, we develop the following
steps. First, we assume that the inequality between some qij and qi0j0 is satis�ed.
Subsequently, using the incentive constraints, we �nd which other conditions this
inequality implies. We proceed similarly with rij and repeat the procedure for all
types. We obtain a number of bunches of conditions. At least one of them must
be satis�ed at the solution. We compare all bunches of conditions and identify
those that are implied by others. From the remaining relevant cases, we derive the
conditions reported in the lemma.

A.1 Incentive compatibility constraints

Here is the full list of incentive compatibility constraints:

�LL � �HL +��qHL (1)

�LL � �LH ���rLH (2)

�LL � �HH +��qHH ���rHH (3)

�HL � �LL ���qLL (4)

�HL � �HH ���rHH (5)

�HL � �LH ���qLH ���rLH (6)

�LH � �HH +��qHH (7)

�LH � �LL +��rLL (8)

�LH � �HL +��qHL +��rHL (9)

�HH � �LH ���qLH (10)

�HH � �HL +��rHL (11)

�HH � �LL ���qLL +��rLL (12)

A.2 Feasible cases for ranking qij and rij
1) Assume qHL � qLH : Jointly with (10), this implies rLH � rHL: Using (9); we

then �nd (
qLL � qHL � qLH � qHH

rHH � rHL; rLH � rHL; rLH � rLL:
(19)

2) Assume rHL � rLH . Jointly with (10), this implies qLH � qHL; so that overall
we have (

qLH � qHH ; qLH � qHL; qLL � qHL
rHH � rHL � rLH � rLL:

(20)

3) Assume qHH � qLL. Jointly with (11), this implies rHH � rLL and so(
qLH � qHH � qLL � qHL

rHH � rHL; rHH � rLL; rLH � rLL:
(21)
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4) Assume rLL � rHH . Jointly with (11), this implies qLL � qHH and so(
qLH � qHH ; qLL � qHH ; qLL � qHL

rLH � rLL � rHH � rHL.
(22)

The remaining cases are the converse of any of the situations 1) - 4) above. We look
at them hereafter.
5) Take the converse of 1), that is qLH � qHL. Then, either rLH � rHL or

rHL � rLH . The latter case is identical to 2). Suppose rLH � rHL: If also qHH � qLL;
then we are back to 3). Suppose qLL � qHH : Then, we get(

qLH � qHL; qLH � qHH ; qLL � qHL; qLL � qHH
rLH � rHL; rLH � rLL; rHH � rHL:

(23)

Still taking qLH � qHL and rLH � rHL and further assuming rLL � rHH ; we are
back to 4). Next suppose rHH � rLL: Then, we have(

qLH � qHL; qLH � qHH ; qLL � qHL
rLH � rHL; rLH � rLL; rHH � rHL; rHH � rLL:

(24)

6) Assume the converse of 2), that is rLH � rHL. If qHL � qLH ; then we are back
to 1). If qLH � qHL; then we are back to 5).
7) Assume the converse of 3), that is qLL � qHH . If rLL � rHH ; then we �nd

again 4). Suppose rHH � rLL. If qHL � qLH ; then we get 1). Supposing qLH � qHL;
we obtain (

qLH � qHL; qLL � qHH ; qLL � qHL; qLH � qHH
rHH � rLL; rHH � rHL; rLH � rLL:

(25)

Still taking qLL � qHH and rHH � rLL and further assuming rHL � rLH ; we move
back to 2). Next suppose rLH � rHL. We have(

qLL � qHH ; qLL � qHL; qLH � qHH
rHH � rLL; rHH � rHL; rLH � rLL; rLH � rHL:

(26)

8) Assume the converse of 4), that is rHH � rLL. If qHH � qLL; then we are back
to 3). Supposing qLL � qHH ; we come back to (26) in the second part of 7).

A.3 Remove irrelevant cases

The �rst line in (19) is a particular case of �rst line in (22). Moreover, the second
line in (22) is a particular case of second line in (19). Overall, (19) and (22) must
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hold simultaneously. We obtain the following ranking:(
qLL � qHL � qLH � qHH
rLH � rLL � rHH � rHL.

(27)

Under (27) the only relevant incentive constraints are (1), (5), (8) and (10) as
the others are all slack. These constraints cannot hold simultaneously unless both
qHL = qLH and rLL = rHH . Replacing into (27) we deduce that (27) is a particular
case of (

qLL � qLH � qHL � qHH
rLH � rHH � rLL � rHL,

which is in turn a particular situation of all cases (23) to (26) : Hence, (19) and (22)
can be omitted. Following the same reasoning as for (19) and (22) ; we �nd that
(20) and (21) must hold simultaneously. The ranking becomes

qLH � qHH � qLL � qHL (28)

rHH � rHL � rLH � rLL:

Moreover, under (28) the only relevant constraints are (4), (2), (7) and (11) as
the others are all slack. These constraints cannot hold simultaneously unless both
qHH = qLL and rHL = rLH . Replacing into (28) we �nd that (28) is a particular
case of

qLH � qLL � qHH � qHL
rHH � rLH � rHL � rLL;

which is in turn another particular situation of all cases (23) to (26) : Hence, (20)
and (21) can be omitted too. Putting together the remaining conditions (23) to
(26) ; we obtain the conditions in the lemma.

B The optimal contract

B.1 Proof of Lemma 2

The relaxed problem with rents (13) to (16), denoted �AR; is such that these rents
replace (5) in �: To assess how the rent speci�es in (16), we follow Armstrong and
Rochet [2] and attach the multipliers 
1; 
2; 
3 2 [0; 1] ; such that 
1 + 
2 + 
3 = 1;
to the three downward incentive constraints of type LH and rewrite (16) as

�LH = 
1 (��qHH +��rHL) + 
2 (��qHL +��rLL) + 
3 (��qHL +��rHL) :

If any 
i; i 2 f1; 2; 3g ; takes a positive value, then the associated incentive constraint
is binding and the corresponding rent is largest.
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The expected rent of the agent is written

����qHL � (1� �) (1� �)��rHL + � (1� �) [
1 (��qHH +��rHL)
+
2 (��qHL +��rLL) + 
3 (��qHL +��rHL)] ;

so that P�s expected utility is given by

W =
1

2
��
h
S(q

LL
)� (�L � �L) + S(qLL)� (�L + �L)

i
+
1

2
� (1� �)

h
S(q

LH
)� (�L � �H) + S(qLH)� (�L + �H)

i
+
1

2
(1� �)�

h
S(q

HL
)� (�H � �L) + S(qHL)� (�H + �L)

i
+
1

2
(1� �) (1� �)

h
S(q

HH
)� (�H � �H) + S(qHH)� (�H + �H)

i
�����qHL � (1� �) (1� �)��rHL + � (1� �) [
1 (��qHH +��rHL)
+
2 (��qHL +��rLL) + 
3 (��qHL +��rHL)] :

The resulting quantity solution is characterized as follows. For type LH; pro-
duction is set at the FB level in either state of the world:

S 0(q�
LH
) = �L � �H (29)

S 0(q�LH) = �L + �H : (30)

For type LL; production is downward distorted in the good state and upward dis-
torted in the bad state:

S 0(q
LL
) = �L � �L + 
2

1� �
�

�� (31)

S 0 (qLL) = �L + �L � 
2
1� �
�

��: (32)

For type HH; production is downward distorted in either state:

S 0(q
HH
) = �H � �H + 
1

�

1� ��� (33)

S 0 (qHH) = �H + �H + 
1
�

1� ���: (34)

Lastly, for type HL; production is downward distorted in the good state and can be

13



either downward or upward distorted in the bad state:

S 0(q
HL
) = �H � �L +

�

1� �

�
1 +

1� �
�

(
2 + 
3)

�
�� (35)

+
1� �
�

�
1 +

�

1� � (
1 + 
3)
�
��

S 0 (qHL) = �H + �L +
�

1� �

�
1 +

1� �
�

(
2 + 
3)

�
�� (36)

�1� �
�

�
1 +

�

1� � (
1 + 
3)
�
��:

It is easy to check that this solution violates incentive constraint (3), as suggested
in the main text.

B.2 Proof of Lemma 3

It is straightforward to see that, with rents (13), (14), (17) and (18), all ex-
pected pro�ts are non-negative. Therefore, none of these rents violates the agent�s
participation constraints.
Let us next see whether and under which conditions the incentive constraints

are satis�ed when those same rents are assigned. Replacing them we have

��qHH +��rHL � ��qHL +��rHH (1)

��qHH +��rLH � ��qHL +��rHH (2)

��qLL +��rHH � ��qHH +��rHL (4)

rHH � rHL (5)

��qLH +��rLH � ��qHL +��rHL (6)

qHL � qHH (7)

��qHL +��rHL � ��qHH +��rLL ���rHH (8)

qLH � qHL (10)

��qLL +��rHH � ��qHH +��rLL: (12)

For the incentive constraints to be satis�ed, necessary conditions are qLH � qHL �
qHH and rHH � rHL: Suppose they hold. Then, we remain with

��qHH +��rHL � ��qHL +��rHH (1)

��qHH +��rLH � ��qHL +��rHH (2)

��qLL +��rHH � ��qHH +��rHL (4)

��qLH +��rLH � ��qHL +��rHL (6)

��qHL +��rHL � ��qHH +��rLL ���rHH (8)

��qLL +��rHH � ��qHH +��rLL: (12)

14



With qHL � qHH ; (1) would require that rHL � rHH : This contradicts the necessary
condition previously identi�ed.

B.3 The quantity solution to �0

Following again the methodology proposed by Armstrong and Rochet [2], we
attach the multipliers �1; �2; �3 2 [0; 1] ; such that �1 + �2 + �3 = 1; to the three
downward incentive constraints of type LH and rewrite (18) as

�LH = �1 (��qHH +��rHL) + �2 (��qHH +��rHL +��rLL ���rHH)
+�3 (��qHL +��rHL) :

If any �i; i 2 f1; 2; 3g ; takes a positive value, then the associated incentive constraint
is binding and the corresponding rent is largest.
The expected rent is written

[��+ � (1� �) (�1 + �2)]��qHH � [��+ � (1� �)�2] ��rHH
+� (1� �) (�2��rLL + �3��qHL) + [1� � (1� �)]��rHL;

so that the objective function of P is given by

W =
1

2
��
h
S(q

LL
)� (�L � �L) + S(qLL)� (�L + �L)

i
+
1

2
� (1� �)

h
S(q

LH
)� (�L � �H) + S(qLH)� (�L + �H)

i
+
1

2
(1� �)�

h
S(q

HL
)� (�H � �L) + S(qHL)� (�H + �L)

i
+
1

2
(1� �) (1� �)

h
S(q

HH
)� (�H � �H) + S(qHH)� (�H + �H)

i
� [��+ � (1� �) (�1 + �2)]��qHH + [��+ � (1� �)�2] ��rHH
�� (1� �) (�2��rLL + �3��qHL)� [1� � (1� �)]��rHL:

The resulting quantity solution is characterized as follows. For type LH; pro-
duction is set at the FB level in either state of the world, i.e. (29) and (30) still
hold. For type LL production is again downward distorted in the good state and
upward distorted in the bad state:

S 0(q
LL
) = �L � �L + �2

1� �
�

�� (37)

S 0 (qLL) = �L + �L � �2
1� �
�

��: (38)

For type HH production is either downward or upward distorted in the good state
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and downward distorted in the bad state:

S 0(q
HH
) = �H � �H +

��+ � (1� �) (�1 + �2)
(1� �) (1� �) �� (39)

���+ � (1� �)�2
(1� �) (1� �) ��

S 0 (qHH) = �H + �H +
��+ � (1� �) (�1 + �2)

(1� �) (1� �) �� (40)

+
��+ � (1� �)�2
(1� �) (1� �) ��:

For type HL production is downward distorted in the good state and either down-
ward or upward distorted in the bad state:

S 0(q
HL
) = �H � �L + �3

� (1� �)
(1� �)��� +

1� � (1� �)
(1� �)� �� (41)

S 0 (qHL) = �H + �L + �3
� (1� �)
(1� �)��� �

1� � (1� �)
(1� �)� ��: (42)

B.4 The monotonicity conditions in �0

Types LH and LL We have

S 0(q
LH
)� S 0(q

LL
) = �

�
1 + �2

1� �
�

�
�� < 0

S 0(qLH)� S 0 (qLL) =

�
1 + �2

1� �
�

�
�� > 0;

so that q
LH
> q

LL
and qLL > qLH : Hence, rLH > rLL: Moreover,

S 0(q
LL
)� S 0(q

LH
) = S 0(qLH)� S 0 (qLL) ;

so that qLH � qLL if and only if S 0 is convex.

Types LH and HL We calculate

S 0(q
HL
)� S 0(q

LH
) = �� +�� + �3

� (1� �)
(1� �)��� +

1� � (1� �)
(1� �)� �� > 0

S 0(qLH)� S 0 (qHL) = ��� +�� � �3
� (1� �)
(1� �)��� +

1� � (1� �)
(1� �)� ��:

Hence, q
LH
> q

HL
. We also have qHL > qLH if and only if [S

0(qLH)� S 0 (qHL)] > 0
and so if and only if

��

��
<

1

(1� �)�+ �3� (1� �)
; (c1)

16



in which case rLH > rHL: We also calculateh
S 0(q

HL
)� S 0(q

LH
)
i
� [S 0(qLH)� S 0 (qHL)] = 2�� + 2�3

� (1� �)
(1� �)��� > 0;

which tells that qLH > qHL if and only if S 0 is not too concave. If

��

��
>

1

(1� �)�+ �3� (1� �)
;

then qLH > qHL and so qLH > qHL. We further computeh
S 0(q

HL
)� S 0(q

LH
)
i
� [S 0 (qHL)� S 0(qLH)] = 2�� + 2

1� � (1� �)
(1� �)� �� > 0

Hence, rLH > rHL if and only S 0 is not too concave.
Overall, if (c1) holds, then it is rLH > rHL whereas qLH > qHL if and only if S 0

is not too concave.
If (c1) does not hols, then qLH > qHL whereas rLH > rHL if and only if S 0 is not

too concave.

Types LH and HH We have

S 0(q
LH
)� S 0(q

HH
) = �

�
1 +

��+ � (1� �) (�1 + �2)
(1� �) (1� �)

�
�� +

��+ � (1� �)�2
(1� �) (1� �) �� < 0

S 0(qLH)� S 0 (qHH) = �
�
1 +

��+ � (1� �) (�1 + �2)
(1� �) (1� �)

�
�� � ��+ � (1� �)�2

(1� �) (1� �) �� < 0;

so that both q
LH
> q

HH
and qLH > qHH . Hence, qLH > qHH . We also calculateh

S 0(q
HH
)� S 0(q

LH
)
i
� [S 0 (qHH)� S 0(qLH)] = �2

��+ � (1� �)�2
(1� �) (1� �) �� < 0;

so that rLH > rHH if and only if S 0 is su¢ ciently convex. In particular, rLH < rHH
with S 0 linear.

Types LL and HL Let us compute

S 0(q
HL
)� S 0(q

LL
) =

�
1 + �3

� (1� �)
(1� �)�

�
�� +

�
1� � (1� �)
(1� �)� � �2

1� �
�

�
�� > 0

S 0 (qLL)� S 0 (qHL) = �
�
1 + �3

� (1� �)
(1� �)�

�
�� +

�
1� � (1� �)
(1� �)� � �2

1� �
�

�
��
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Hence, q
LL
> q

HL
. If

��

��
<
1� � (1� �)� �2 (1� �) (1� �)

�3� (1� �) + (1� �)�
; (c2)

then [S 0 (qLL)� S 0 (qHL)] > 0 and so qHL > qLL. With �2 = 1 the RHS of (c2)
becomes �

(1��)� ; which can be larger than 1: With �3 = 1 the RHS is
1��+��

�(1��)+(1��)� ;

which exceeds 1 if and only if (1� �) (1� 2�) > 0: This is feasible. If (c2) satis�ed,
then we have rLL > rHL. We also computeh

S 0(q
HL
)� S 0(q

LL
)
i
� [S 0 (qLL)� S 0 (qHL)] = 2

�
1 + �3

� (1� �)
(1� �)�

�
�� > 0;

so that qLL > qHL if and only if S 0 is not too concave. If (c2) is not satis�ed, then
qLL > qHL: In this case qLL > qHL. Moreover,h
S 0(q

HL
)� S 0(q

LL
)
i
� [S 0 (qHL)� S 0 (qLL)] = 2

1� (1� �) [� (1� �2) + �2]
(1� �)� �� > 0;

so that rLL > rHL if and only if S 0 is not too concave.
Overall, if (c2) holds, then qLL > qHL if and only if S 0 is not too concave together

with rLL > rHL:
If (c2) does not hold, then qLL > qHL together with rLL > rHL if and only if S 0

is not too concave.

Types LL and HH We calculate

S 0(q
LL
)� S 0(q

HH
) = �

�
1 +

��+ � (1� �) (�1 + �2)
(1� �) (1� �)

�
��

+

�
1 + �2

1� �
�

+
��+ � (1� �)�2
(1� �) (1� �)

�
��

S 0 (qHH)� S 0 (qLL) =

�
1 +

��+ � (1� �) (�1 + �2)
(1� �) (1� �)

�
��

+

�
1 + �2

1� �
�

+
��+ � (1� �)�2
(1� �) (1� �)

�
��

Hence, qLL > qHH : If

��

��
<
��+ (1� �) (1� �) + �2 (1� �)

h
1��
�
(1� �) + �

i
��+ (1� �) (1� �) + � (1� �) (�1 + �2)

; (c3)

then
h
S 0(q

LL
)� S 0(q

HH
)
i
> 0 and so q

HH
> q

LL
. With �2 = 1 the RHS of (c3) is

larger than 1 if and only if 1��
�
(1� �) > 0; which is always the case. With �1 = 1

the RHS is smaller than 1; so that (c3) cannot hold. More generally, (c3) does not
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hold whenever �2 = 0: If (c3) is satis�ed, then rHH > rLL. Moreover,h
S 0(q

LL
)� S 0(q

HH
)
i
�[S 0 (qHH)� S 0 (qLL)] = �2

�
1 +

��+ � (1� �) (�1 + �2)
(1� �) (1� �)

�
�� < 0:

Hence, qLL > qHH as long as S 0 is either linear or concave, whereas qHH > qLL if
and only if S 0 is su¢ ciently convex.
If (c3) is not satis�ed, then q

LL
> q

HH
so that qLL > qHH . Moreover,

h
S 0(q

HH
)� S 0(q

LL
)
i
�[S 0 (qHH)� S 0 (qLL)] = �2

�
1 + �2

1� �
�

+
��+ � (1� �)�2
(1� �) (1� �)

�
�� < 0:

With S 0 non-convex rHH > rLL; whereas rLL > rHH if and only if S 0 is su¢ ciently
convex.

Types HL and HH We calculate

S 0(q
HL
)� S 0(q

HH
) =

�
�3
� (1� �)
(1� �)� �

��+ � (1� �) (�1 + �2)
(1� �) (1� �)

�
��

+

�
1 +

1� � (1� �)
(1� �)� +

��+ � (1� �)�2
(1� �) (1� �)

�
��

S 0 (qHL)� S 0 (qHH) =

�
�3
� (1� �)
(1� �)� �

��+ � (1� �) (�1 + �2)
(1� �) (1� �)

�
��

�
�
1 +

1� � (1� �)
(1� �)� +

��+ � (1� �)�2
(1� �) (1� �)

�
��

We have
h
S 0(q

HL
)� S 0(q

HH
)
i
> 0; and hence q

HH
> q

HL
; if and only if

� [1� 2�� (1� �) (�1 + �2)]
��

��
> �

�
1� �+ ��2 + �� (1� �)�2

�
: (x)

It is 1� �+ ��2 + �� (1� �)�2 > 0; so that the RHS of (x) is negative.
(i) Take 2�+ (1� �) (�1 + �2) < 1: Then, (x) is always satis�ed so that qHH >

q
HL
:

(ii) When 2�+ (1� �) (�1 + �2) > 1; it is then convenient to rewrite (x) as

��

��
<

1� �+ ��2 + �� (1� �)�2
� [(1� �) (�1 + �2)� (1� 2�)]

:

The RHS is < 1 if and only if 1 + � (1� �) < � [�1 + (1� �)�2] : Because 1 +
� (1� �) > 1 and � [�1 + (1� �)�2] < 1; this is impossible. Hence, the inequality
above can be satis�ed. If this is the case, then q

HH
> q

HL
. Otherwise, the converse

occurs.

19



We further have [S 0 (qHL)� S 0 (qHH)] > 0; and so qHH > qHL; if and only if

� [1� 2�� (1� �) (�1 + �2)]
��

��
> 1� �+ ��2 + �� (1� �)�2: (y)

The RHS of (y) is positive.
(i) Suppose 2�+ (1� �) (�1 + �2) < 1: It is then convenient to rewrite (y) as

��

��
>
1� �+ ��2 + �� (1� �)�2
� [1� 2�� (1� �) (�1 + �2)]

:

From the computations above, we know that the RHS is larger than 1; so that this
condition may or may not be satis�ed. We have qHH > qHL if and only if it holds
and the converse otherwise.
(ii) Take 2� + (1� �) (�1 + �2) > 1: Then, (y) is never satis�ed so that qHL >

qHH :

TO BE COMPLETED

20


